JZ
Juan Zhou
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
1
h-index:
33
/
i10-index:
150
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
27

Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity

Xiaoxuan Yan et al.Oct 27, 2022
+16
A
L
X
Abstract Resting-state fMRI is commonly used to derive brain parcellations, which are widely used for dimensionality reduction and interpreting human neuroscience studies. We previously developed a model that integrates local and global approaches for estimating areal-level cortical parcellations. The resulting local-global parcellations are often referred to as the Schaefer parcellations. However, the lack of homotopic correspondence between left and right Schaefer parcels has limited their use for brain lateralization studies. Here, we extend our previous model to derive homotopic areal-level parcellations. Using resting-fMRI and task-fMRI across diverse scanners, acquisition protocols, preprocessing and demographics, we show that the resulting homotopic parcellations are as homogeneous as the Schaefer parcellations, while being more homogeneous than five publicly available parcellations. Furthermore, weaker correlations between homotopic parcels are associated with greater lateralization in resting network organization, as well as lateralization in language and motor task activation. Finally, the homotopic parcellations agree with the boundaries of a number of cortical areas estimated from histology and visuotopic fMRI, while capturing sub-areal (e.g., somatotopic and visuotopic) features. Overall, these results suggest that the homotopic local- global parcellations represent neurobiologically meaningful subdivisions of the human cerebral cortex and will be a useful resource for future studies. Multi-resolution parcellations estimated from 1479 participants are publicly available (GITHUB_LINK).
0

The genetic architecture of the human cerebral cortex

Katrina Grasby et al.Sep 3, 2018
+355
C
I
K
The cerebral cortex underlies our complex cognitive capabilities, yet we know little about the specific genetic loci influencing human cortical structure. To identify genetic variants, including structural variants, impacting cortical structure, we conducted a genome-wide association meta-analysis of brain MRI data from 51,662 individuals. We analysed the surface area and average thickness of the whole cortex and 34 regions with known functional specialisations. We identified 255 nominally significant loci ( P ≤ 5 × 10−8); 199 survived multiple testing correction ( P ≤ 8.3 × 10−10; 187 surface area; 12 thickness). We found significant enrichment for loci influencing total surface area within regulatory elements active during prenatal cortical development, supporting the radial unit hypothesis. Loci impacting regional surface area cluster near genes in Wnt signalling pathways, known to influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression and ADHD.One Sentence Summary Common genetic variation is associated with inter-individual variation in the structure of the human cortex, both globally and within specific regions, and is shared with genetic risk factors for some neuropsychiatric disorders.
0

Planar cell polarity pathway and development of the human visual cortex

Jean Shin et al.Aug 31, 2018
+361
M
Y
J
The radial unit hypothesis provides a framework for global (proliferation) and regional (distribution) expansion of the primate cerebral cortex. Using principal component analysis (PCA), we have identified cortical regions with shared variance in their surface area and cortical thickness, respectively, segmented from magnetic resonance images obtained in 23,800 participants. We then carried out meta-analyses of genome-wide association studies of the first two principal components for each phenotype. For surface area (but not cortical thickness), we have detected strong associations between each of the components and single nucleotide polymorphisms in a number of gene loci. The first (global) component was associated mainly with loci on chromosome 17 (9.5e-32 ≤ p ≤ 2.8e-10), including those detected previously as linked with intracranial volume and/or general cognitive function. The second (regional) component captured shared variation in the surface area of the primary and adjacent secondary visual cortices and showed a robust association with polymorphisms in a locus on chromosome 14 containing Disheveled Associated Activator of Morphogenesis 1 ( DAAM1 ; p =2.4e-34). DAAM1 is a key component in the planar-cell-polarity signaling pathway. In follow-up studies, we have focused on the latter finding and established that: (1) DAAM1 is highly expressed between 12th and 22nd post-conception weeks in the human cerebral cortex; (2) genes co-expressed with DAAM1 in the primary visual cortex are enriched in mitochondria-related pathways; and (3) volume of the lateral geniculate nucleus, which projects to regions of the visual cortex staining for cytochrome oxidase (a mitochondrial enzyme), correlates with the surface area of the visual cortex in major-allele homozygotes but not in carriers of the minor allele. Altogether, we speculate that, in concert with thalamocortical input to cortical subplate, DAAM1 enables migration of neurons to cytochrome-oxidase rich regions of the visual cortex, and, in turn, facilitates regional expansion of this set of cortical regions during development.
0

Individual-Specific fMRI-Subspaces Improve Functional Connectivity Prediction of Behavior

Rajan Kashyap et al.Jan 9, 2019
+4
R
J
R
There is significant interest in using resting-state functional connectivity (RSFC) to predict human behavior. Good behavioral prediction should in theory require RSFC to be sufficiently distinct across participants; if RSFC were the same across participants, then behavioral prediction would obviously be poor. Therefore, we hypothesize that removing common resting-state functional magnetic resonance imaging (rs-fMRI) signals that are shared across participants would improve behavioral prediction. Here, we considered 803 participants from the human connectome project (HCP) with four rs-fMRI runs. We applied the common and orthogonal basis extraction (COBE) technique to decompose each HCP run into two subspaces: a common (group-level) subspace shared across all participants and a subject-specific subspace. We found that the first common COBE component of the first HCP run was localized to the visual cortex and was unique to the run. On the other hand, the second common COBE component of the first HCP run and the first common COBE component of the remaining HCP runs were highly similar and localized to regions within the default network, including the posterior cingulate cortex and precuneus. Overall, this suggests the presence of run-specific (state-specific) effects that were shared across participants. By removing the first and second common COBE components from the first HCP run, and the first common COBE component from the remaining HCP runs, the resulting RSFC improves behavioral prediction by an average of 11.7% across 58 behavioral measures spanning cognition, emotion and personality.
0

LncRNA and predictive model to improve the diagnosis of clinically diagnosed pulmonary tuberculosis

Zhaolei Zhang et al.Dec 3, 2019
+14
J
Y
Z
Background: Clinically diagnosed pulmonary tuberculosis (PTB) patients lack Mycobacterium tuberculosis (MTB) microbiologic evidence, and misdiagnosis or delayed diagnosis often occurs as a consequence. We investigated the potential of lncRNAs and corresponding predictive models to diagnose these patients. Methods We enrolled 1372 subjects, including clinically diagnosed PTB patients, non-TB disease controls and healthy controls, in three cohorts (Screening, Selection and Validation). Candidate lncRNAs differentially expressed in blood samples of the PTB and healthy control groups were identified by microarray and qRT-PCR in the Screening Cohort. Logistic regression models were developed using lncRNAs and/or electronic health records (EHRs) from clinically diagnosed PTB patients and non-TB disease controls in the Selection Cohort. These models were evaluated by AUC and decision curve analysis, and the optimal model was presented as a Web-based nomogram, which was evaluated in the Validation Cohort. The biological function of lncRNAs was interrogated using ELISA, lactate dehydrogenase release analysis and flow cytometry. Results: Three differentially expressed lncRNAs (ENST00000497872, n333737, n335265) were identified. The optimal model (i.e., nomogram) incorporated these three lncRNAs and six EHR variables (age, hemoglobin, weight loss, low-grade fever, CT calcification and TB-IGRA). The nomogram showed an AUC of 0.89, sensitivity of 0.86 and specificity of 0.82 in the Validation Cohort, which demonstrated better discrimination and clinical net benefit than the EHR model. ENST00000497872 may regulate inflammatory cytokine production, cell death and apoptosis during MTB infection. Conclusions: LncRNAs and the user-friendly nomogram could facilitate the early identification of PTB cases among suspected patients with negative MTB microbiologic evidence.