SC
Sydney Cash
Author with expertise in Neuronal Oscillations in Cortical Networks
Massachusetts General Hospital, Harvard University, Center for Neuro-Oncology
+ 11 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
44
(59% Open Access)
Cited by:
88
h-index:
78
/
i10-index:
244
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Closed loop enhancement and neural decoding of human cognitive control

Ishita Basu et al.Oct 24, 2023
+12
B
A
I
Abstract Cognitive control is the ability to withhold a default, prepotent response in favor of a more adaptive choice. Control deficits are common across mental disorders, including depression, anxiety, and addiction. Thus, a method for improving cognitive control could be broadly useful in disorders with few effective treatments. Here, we demonstrate closed-loop enhancement of one aspect of cognitive control by direct brain stimulation in humans. We stimulated internal capsule/striatum in participants undergoing intracranial epilepsy monitoring as they performed a cognitive control/conflict task. Stimulation enhanced performance, with the strongest effects from dorsal capsule/striatum stimulation. We then developed a framework to detect control lapses and stimulate in response. This closed-loop approach produced larger behavioral changes than open-loop stimulation, with a slight improvement in performance change per unit of energy delivered. Finally, we decoded task performance directly from activity on a small number of electrodes, using features compatible with existing closed-loop brain implants. Our findings are proof of concept for a new approach to treating severe mental disorders, based on directly remediating underlying cognitive deficits.
1
Citation14
0
Save
25

The timescale and magnitude of 1/f aperiodic activity decrease with cortical depth in humans, macaques, and mice

Mila Halgren et al.Oct 24, 2023
+10
B
R
M
Abstract Cortical dynamics obey a 1/f power law, exhibiting an exponential decay of spectral power with increasing frequency. The slope and offset of this 1/f decay reflect the timescale and magnitude of aperiodic neural activity, respectively. These properties are tightly linked to cellular and circuit mechanisms (e.g. excitation:inhibition balance and firing rates) as well as cognitive processes (e.g. perception, memory, and state). However, the physiology underlying the 1/f power law in cortical dynamics is not well understood. Here, we compared laminar recordings from human, macaque and mouse cortex to evaluate how 1/f aperiodic dynamics vary across cortical layers and species. We report that 1/f slope is steepest in superficial layers and flattest in deep layers in each species. Additionally, the magnitude of this 1/f decay is greatest in superficial cortex and decreases with depth. We could account for both of these findings with a simple model in which superficial cortical transmembrane currents had longer time constants and greater densities than those in deeper layers. Together, our results provide novel insight into the organization of cortical dynamics, suggesting that the amplitude and time constant of local currents control circuit processing as a function of laminar depth. This may represent a general mechanism to facilitate appropriate integration of fast sensory inputs (infragranular) with slow feedback-type inputs (supragranular) across cortical areas and species.
9

Cortical ripples during NREM sleep and waking in humans

Charles Dickey et al.Oct 24, 2023
+6
X
I
C
Abstract Hippocampal ripples index the reconstruction of spatiotemporal neuronal firing patterns essential for the consolidation of memories in the cortex during non-rapid eye movement sleep (NREM). Recently, cortical ripples in humans have been shown to enfold the replay of neuron firing patterns during cued recall. Here, using intracranial recordings from 18 patients (12 female), we show that cortical ripples also occur during NREM in humans, with similar density, oscillation frequency (∼90 Hz), duration, and amplitude to waking. Ripples occurred in all cortical regions with similar characteristics, unrelated to putative hippocampal connectivity, and were less dense and robust in higher association areas. Putative pyramidal and interneuron spiking phase-locked to cortical ripples during NREM, with phase delays consistent with ripple generation through pyramidal-interneuron feedback. Cortical ripples were smaller in amplitude than hippocampal ripples, but were similar in density, frequency, and duration. Cortical ripples during NREM typically occurred just prior to the upstate peak, often during spindles. Upstates and spindles have previously been associated with memory consolidation, and we found that cortical ripples grouped co-firing between units within the window of spike-timing-dependent plasticity. Thus, human NREM cortical ripples are: ubiquitous and stereotyped with a tightly focused oscillation frequency; similar to hippocampal ripples; associated with upstates and spindles; and associated with unit co-firing. These properties are consistent with cortical ripples possibly contributing to memory consolidation and other functions during NREM in humans. Significance Statement In rodents, hippocampal ripples organize replay during sleep to promote memory consolidation in the cortex, where ripples also occur. However, evidence for cortical ripples in human sleep is limited, and their anatomical distribution and physiological properties are unexplored. Here, using human intracranial recordings, we demonstrate that ripples occur throughout the cortex during waking and sleep with highly stereotyped characteristics. During sleep, cortical ripples tend to occur during spindles on the down-to-upstate transition, and thus participate in a sequence of sleep waves that is important for consolidation. Furthermore, cortical ripples organize single unit spiking with timing optimal to facilitate plasticity. Therefore, cortical ripples in humans possess essential physiological properties to support memory and other cognitive functions.
9
Citation10
0
Save
0

Single-neuronal elements of speech production in humans

Arjun Khanna et al.Mar 6, 2024
+13
Y
W
A
Abstract Humans are capable of generating extraordinarily diverse articulatory movement combinations to produce meaningful speech. This ability to orchestrate specific phonetic sequences, and their syllabification and inflection over subsecond timescales allows us to produce thousands of word sounds and is a core component of language 1,2 . The fundamental cellular units and constructs by which we plan and produce words during speech, however, remain largely unknown. Here, using acute ultrahigh-density Neuropixels recordings capable of sampling across the cortical column in humans, we discover neurons in the language-dominant prefrontal cortex that encoded detailed information about the phonetic arrangement and composition of planned words during the production of natural speech. These neurons represented the specific order and structure of articulatory events before utterance and reflected the segmentation of phonetic sequences into distinct syllables. They also accurately predicted the phonetic, syllabic and morphological components of upcoming words and showed a temporally ordered dynamic. Collectively, we show how these mixtures of cells are broadly organized along the cortical column and how their activity patterns transition from articulation planning to production. We also demonstrate how these cells reliably track the detailed composition of consonant and vowel sounds during perception and how they distinguish processes specifically related to speaking from those related to listening. Together, these findings reveal a remarkably structured organization and encoding cascade of phonetic representations by prefrontal neurons in humans and demonstrate a cellular process that can support the production of speech.
1

Ultra-compact Dual-band Smart NEMS Magnetoelectric Antennas for Simultaneous Wireless Energy Harvesting and Magnetic Field Sensing

Mohsen Zaeimbashi et al.Oct 24, 2023
+17
A
M
M
Abstract Ultra-compact wireless implantable medical devices (IMDs) are in great demand for healthcare applications, in particular for neural recording and stimulation. Current implantable technologies based on miniaturized micro-coils suffer from low wireless power transfer efficiency (PTE) and are not always compliant with the specific absorption rate imposed by the Federal Communications Commission, particularly for deep brain implantation where field attenuation and tissue loss are significant. Moreover, current implantable devices are reliant on recordings of voltage or current. This has two major weaknesses: 1) the necessary direct contact between electrode and tissue degrades over time due to electrochemical fouling and tissue reactions, and 2) the necessity for differential recordings across space. Here, we report, for the first time, an ultra-compact dual-band smart nanoelectromechanical systems magnetoelectric (ME) antenna with a size of 250×174 μm 2 that can efficiently perform wireless energy harvesting and sense ultra-small magnetic fields such as those arising from neural activities. The proposed smart ME antenna has a wireless PTE 1~2 orders of magnitude higher than any other reported miniaturized micro-coil, allowing the wireless IMDs to be compliant with the specific absorption rate (SAR) limit and to operate under safe exposure of radio frequency energy. Furthermore, the magnetic sensing capability of the proposed smart ME antenna, with a limit of detection of 300~500pT at > 200Hz, should allow the IMDs to record neural magnetic fields from the brain without requiring differential recording.
16

Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall

Charles Dickey et al.Oct 24, 2023
+10
X
I
C
Abstract Declarative memory encoding, consolidation, and retrieval require the integration of elements encoded in widespread cortical locations. The mechanism whereby such ‘binding’ of different components of mental events into unified representations occurs is unknown. The ‘binding-bysynchrony’ theory proposes that distributed encoding areas are bound by synchronous oscillations enabling enhanced communication. However, evidence for such oscillations is sparse. Brief high-frequency oscillations (‘ripples’) occur in the hippocampus and cortex, and help organize memory recall and consolidation. Here, using intracranial recordings in humans, we report that these ~70ms duration 90Hz ripples often couple (within ±500ms), co-occur (≥25ms overlap), and crucially, phase-lock (have consistent phase-lags) between widely distributed focal cortical locations during both sleep and waking, even between hemispheres. Cortical ripple co-occurrence is facilitated through activation across multiple sites, and phaselocking increases with more cortical sites co-rippling. Ripples in all cortical areas co-occur with hippocampal ripples but do not phase-lock with them, further suggesting that cortico-cortical synchrony is mediated by cortico-cortical connections. Ripple phase-lags vary across sleep nights, consistent with participation in different networks. During waking, we show that hippocampo-cortical and cortico-cortical co-ripples increase preceding successful delayed memory recall, when binding between the cue and response is essential. Ripples increase and phase-modulate unit firing, and co-ripples increase high-frequency correlations between areas, suggesting synchronized unit-spiking facilitating information exchange. Co-occurrence, phasesynchrony, and high-frequency correlation are maintained with little decrement over very long distances (25cm). Hippocampo-cortico-cortical co-ripples appear to possess the essential properties necessary to support binding-by-synchrony during memory retrieval, and perhaps generally in cognition. Significance Statement Different elements of a memory, or any mental event, are encoded in locations distributed across the cortex. A prominent hypothesis proposes that widespread networks are integrated with bursts of synchronized high-frequency oscillations called ‘ripples,’ but evidence is limited. Here, using recordings inside the human brain, we show that ripples occur simultaneously in multiple lobes in both cortical hemispheres, and the hippocampus, generally during sleep and waking, and especially during memory recall. Ripples phase-lock local cell firing, and phase-synchronize with little decay between locations separated by up to 25cm, enabling long-distance integration. Indeed, co-rippling sites have increased correlation of very high-frequency activity which reflects cell firing. Thus, ripples may help bind information across the cortex in memory and other mental events.
204

Large-scale neural recordings with single-cell resolution in human cortex using high-density Neuropixels probes

Angelique Paulk et al.Oct 24, 2023
+11
A
Y
A
ABSTRACT Recent advances in multi-electrode array technology have made it possible to monitor large neuronal ensembles at cellular resolution. In humans, however, current approaches either restrict recordings to only a few neurons per penetrating electrode or combine the signals of thousands of neurons in local field potential (LFP) recordings. Here, we describe a new probe variant and set of techniques which enable simultaneous recording from over 200 well-isolated cortical single units in human participants during intraoperative neurosurgical procedures using silicon Neuropixels probes. We characterized a diversity of extracellular waveforms with eight separable single unit classes, with differing firing rates, positions along the length of the linear electrode array, spatial spread of the waveform, and modulation by LFP events such as inter-ictal discharges and burst suppression. While some additional challenges remain in creating a turn-key recording system, high-density silicon arrays provide a path for studying human-specific cognitive processes and their dysfunction at unprecedented spatiotemporal resolution.
6

Robust Online Multiband Drift Estimation in Electrophysiology Data

Charlie Windolf et al.Oct 24, 2023
+12
Y
A
C
ABSTRACT High-density electrophysiology probes have opened new possibilities for systems neuroscience in human and non-human animals, but probe motion (or drift) while recording poses a challenge for downstream analyses, particularly in human recordings. Here, we improve on the state of the art for tracking this drift with an algorithm termed DREDge ( D ecentralized R egistration of E lectrophysiology D ata) with four major contributions. First, we extend previous decentralized methods to exploit multiband information, leveraging the local field potential (LFP), in addition to spikes detected from the action potentials (AP). Second, we show that the LFP-based approach enables registration at sub-second temporal resolution. Third, we introduce an efficient online motion tracking algorithm, allowing the method to scale up to longer and higher spatial resolution recordings, which could facilitate real-time applications. Finally, we improve the robustness of the approach by accounting for the nonstationarities that occur in real data and by automating parameter selection. Together, these advances enable fully automated scalable registration of challenging datasets from both humans and mice.
0

Bidirectional modulation of human emotional conflict resolution using intracranial stimulation

Angelique Paulk et al.May 7, 2020
+20
K
A
A
Abstract The ability to regulate emotions in the service of meeting ongoing goals and task demands is a key aspect of adaptive human behavior in our volatile social world. Consequently, difficulties in processing and responding to emotional stimuli underlie many psychiatric diseases ranging from depression to anxiety, the common thread being effects on behavior. Behavior, which is made up of shifting, difficult to measure hidden states such as attention and emotion reactivity, is a product of integrating external input and latent mental processes. Directly measuring, and differentiating, separable hidden cognitive, emotional, and attentional states contributing to emotion conflict resolution, however, is challenging, particularly when only using task-relevant behavioral measures such as reaction time. State-space representations are a powerful method for investigating hidden states underlying complex systems. Using state-space modeling of behavior, we identified relevant hidden cognitive states and predicted behavior in a standardized emotion regulation task. After identifying and validating models which best fit the behavior and narrowing our focus to one model, we used targeted intracranial stimulation of the emotion regulation-relevant neurocircuitry, including prefrontal structures and the amygdala, to causally modulate separable states. Finally, we focused on this one validated state-space model to perform real-time, bidirectional closed-loop adaptive stimulation in a subset of participants. These approaches enable an improved understanding of how to sample and understand emotional processing in a way which could be leveraged in neuromodulatory therapy for disorders of emotional regulation.
0
Citation5
0
Save
8

Brain network dynamics codify heterogeneity in seizure propagation

Nuttida Rungratsameetaweemana et al.Oct 24, 2023
+3
S
C
N
Abstract Dynamic functional brain connectivity facilitates adaptive cognition and behavior. Abnormal alterations within such connectivity could result in disrupted functions observed across various neurological conditions. As one of the most common neurological disorders, epilepsy is defined by the seemingly random occurrence of spontaneous seizures. A central but unresolved question concerns the mechanisms by which extraordinarily diverse dynamics of seizures emerge. Here, we apply a graph-theoretical approach to assess dynamic reconfigurations in the functional brain connectivity before, during, and after seizures that display heterogeneous propagation patterns despite sharing similar origins. We demonstrate unique reconfigurations in globally-defined network properties preceding seizure onset that predict propagation patterns of impending seizures, and in locally-defined network properties that differentiate post-onset dynamics. These results characterize quantitative network features underlying the heterogeneity of seizure dynamics and the accompanying clinical manifestations. Decoding these network properties could improve personalized preventative treatment strategies for epilepsy as well as other neurological disorders.
8
Citation4
0
Save
Load More