AB
Alison Bentley
Author with expertise in Genetic Diversity and Breeding of Wheat
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(79% Open Access)
Cited by:
1,199
h-index:
36
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High‐density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool

Mark Winfield et al.Oct 15, 2015
Summary In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra‐high‐density Axiom ® genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.
0
Citation359
0
Save
0

Characterization of a Wheat Breeders’ Array suitable for high‐throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum)

Alexandra Allen et al.Sep 14, 2016
Summary Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism‐based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high‐density Affymetrix Axiom ® genotyping array (the Wheat Breeders’ Array), in a high‐throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders’ Array is also suitable for generating high‐density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site ‘CerealsDB’.
0
Citation298
0
Save
0

An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation

Ian Mackay et al.Sep 1, 2014
Abstract MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.
0
Citation207
0
Save
78

Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding

Michael Scott et al.Sep 15, 2020
Abstract Background Breeding has helped improve bread wheat yield significantly over the last century. Understanding the potential for future crop improvement depends on relating segregating genetic variation to agronomic traits. Results We bred NIAB Diverse MAGIC population, comprising over 500 recombinant inbred lines, descended from sixteen bread wheat varieties released between 1935-2004. We sequenced the founders’ exomes and promotors by capture. Despite being highly representative of North-West European wheat and capturing 73% of global polymorphism, we found 89% of genes contained no more than three haplotypes. We sequenced each line with 0.3x coverage whole-genome sequencing, and imputed 1.1M high-quality SNPs that were over 99% concordant with array genotypes. Imputation accuracy remained high at coverage as low as 0.076x, with or without the use of founder genomes as reference panels. We created a genotype-phenotype map for 47 traits over two years. We found 136 genome-wide significant associations, concentrated at 42 genetic loci with large and often pleiotropic effects. Outside of these loci most traits are polygenic, as revealed by multi-locus shrinkage modelling. Conclusions Historically, wheat breeding has reshuffled a limited palette of haplotypes; continued improvement will require selection at dozens of loci of diminishing effect, as most of the major loci we mapped are known. Breeding to optimise one trait generates correlated trait changes, exemplified by the negative trade-off between yield and protein content, unless selection and recombination can break critical unfavourable trait-trait associations. Finally, low coverage whole genome sequencing of bread wheat populations is an economical and accurate genotyping strategy.
78
Citation6
0
Save
4

ENVIROME-WIDE ASSOCIATIONS ENHANCE MULTI-YEAR GENOME-BASED PREDICTION OF HISTORICAL WHEAT BREEDING DATA

Germano Costa‐Neto et al.Aug 15, 2022
ABSTRACT Linking high-throughput environmental data (enviromics) into genomic prediction (GP) is a cost-effective strategy for increasing selection intensity under genotype-by-environment interactions (G×E). This study developed a data-driven approach based on Environment-Phenotype Associations (EPA) aimed at recycling important G×E information from historical breeding data. EPA was developed in two applications: (1) scanning a secondary source of genetic variation, weighted from the shared reaction-norms of past-evaluated genotypes; (2) pinpointing weights of the similarity among trial-sites (locations), given the historical impact of each envirotyping data variable for a given site. Then, the EPA outcomes were integrated into multi-environment GP models through a new single-step GBLUP. The wheat trial data used included 36 locations, 8 years and 3 target populations of environments (TPE) in India. Four prediction scenarios and 6 kernel-models within/across TPEs were tested. Our results suggest that the conventional GBLUP, without enviromic data or when omitting EPA, is inefficient in predicting the performance of wheat lines in future years. However, when EPA was introduced as an intermediary learning step to reduce the dimensionality of the G×E kernels while connecting phenotypic and environmental-wide variation, a significant enhancement of G×E prediction accuracy was evident. EPA revealed that the effect of seasonality makes strategies such as “covariable selection” unfeasible because G×E is year-germplasm specific. We propose that the EPA effectively serves as a “reinforcement learner” algorithm capable of uncovering the effect of seasonality over the reaction-norms, with the benefits of better forecasting the similarities between past and future trialing sites. EPA combines the benefits of dimensionality reduction while reducing the uncertainty of genotype-by-year predictions and increasing the resolution of GP for the genotype-specific level.
4
Citation2
0
Save
0

High-throughput phenotyping using hyperspectral indicators supports the genetic dissection of yield in durum wheat grown under heat and drought stress

Rosa Mérida-García et al.Nov 22, 2024
High-throughput phenotyping (HTP) provides new opportunities for efficiently dissecting the genetic basis of drought-adaptive traits, which is essential in current wheat breeding programs. The combined use of HTP and genome-wide association (GWAS) approaches has been useful in the assessment of complex traits such as yield, under field stress conditions including heat and drought. The aim of this study was to identify molecular markers associated with yield (YLD) in elite durum wheat that could be explained using hyperspectral indices (HSIs) under drought field conditions in Mediterranean environments in Southern Spain. The HSIs were obtained from hyperspectral imagery collected during the pre-anthesis and anthesis crop stages using an airborne platform. A panel of 536 durum wheat lines were genotyped by sequencing (GBS, DArTseq) to determine population structure, revealing a lack of genetic structure in the breeding germplasm. The material was phenotyped for YLD and 19 HSIs for six growing seasons under drought field conditions at two locations in Andalusia, in southern Spain. GWAS analysis identified 740 significant marker-trait associations (MTAs) across all the durum wheat chromosomes, several of which were common for YLD and the HSIs, and can potentially be integrated into breeding programs. Candidate gene (CG) analysis uncovered genes related to important plant processes such as photosynthesis, regulatory biological processes, and plant abiotic stress tolerance. These results are novel in that they combine high-resolution hyperspectral imaging at the field scale with GWAS analysis in wheat. They also support the use of HSIs as useful tools for identifying chromosomal regions related to the heat and drought stress response in wheat, and pave the way for the integration of field HTP in wheat breeding programs.
0
Citation1
0
Save
1

Over-expression of the brassinosteroid gene TaDWF4 increases wheat productivity under low and sufficient nitrogen through enhanced carbon assimilation

Matthew Milner et al.Sep 22, 2021
Abstract There is a strong pressure to reduce nitrogen (N) fertiliser inputs while maintaining or increasing current cereal crop yields. Brassinosteroids, (BR), are a group of phytohormones essential for plant growth and development, that have been demonstrated to regulate several agronomic traits. DWF4 encodes a cytochrome P450 that catalyses a rate-limiting step in BR synthesis. We show that overexpression of the dominant shoot expressed homoeologue TaDWF4-B in wheat can increase plant productivity by up to 105% under a range of N levels on marginal soils, resulting in increased N use efficiency (NUE). We show that a two to four-fold increase in TaDWF4 transcript levels enhances the responsiveness of genes regulated by N. The productivity increases seen were primarily due to the maintenance of photosystem II operating efficiency and carbon assimilation in plants when grown under limiting N conditions and not an overall increase in photosynthesis capacity. The increased biomass production and yield per plant in TaDWF4 OE lines could be linked to modified carbon partitioning and changes in expression pattern of the growth regulator Target Of Rapamycin, offering a route towards breeding for sustained yield and lower N inputs.
1
Citation1
0
Save
Load More