PE
Peter Eastman
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
7,280
h-index:
27
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

Jumin Lee et al.Nov 12, 2015
Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.
0

Escaping Atom Types in Force Fields Using Direct Chemical Perception

David Mobley et al.Oct 11, 2018
Traditional approaches to specifying a molecular mechanics force field encode all the information needed to assign force field parameters to a given molecule into a discrete set of atom types. This is equivalent to a representation consisting of a molecular graph comprising a set of vertices, which represent atoms labeled by atom type, and unlabeled edges, which represent chemical bonds. Bond stretch, angle bend, and dihedral parameters are then assigned by looking up bonded pairs, triplets, and quartets of atom types in parameter tables to assign valence terms and using the atom types themselves to assign nonbonded parameters. This approach, which we call indirect chemical perception because it operates on the intermediate graph of atom-typed nodes, creates a number of technical problems. For example, atom types must be sufficiently complex to encode all necessary information about the molecular environment, making it difficult to extend force fields encoded this way. Atom typing also results in a proliferation of redundant parameters applied to chemically equivalent classes of valence terms, needlessly increasing force field complexity. Here, we describe a new approach to assigning force field parameters via direct chemical perception. Rather than working through the intermediary of the atom-typed graph, direct chemical perception operates directly on the unmodified chemical graph of the molecule to assign parameters. In particular, parameters are assigned to each type of force field term (e.g., bond stretch, angle bend, torsion, and Lennard–Jones) based on standard chemical substructure queries implemented via the industry-standard SMARTS chemical perception language, using SMIRKS extensions that permit labeling of specific atoms within a chemical pattern. We use this to implement a new force field format, called the SMIRKS Native Open Force Field (SMIRNOFF) format. We demonstrate the power and generality of this approach using examples of specific molecules that pose problems for indirect chemical perception and construct and validate a minimalist yet very general force field, SMIRNOFF99Frosst. We find that a parameter definition file only ∼300 lines long provides coverage of all but <0.02% of a 5 million molecule drug-like test set. Despite its simplicity, the accuracy of SMIRNOFF99Frosst for small molecule hydration free energies and selected properties of pure organic liquids is similar to that of the General Amber Force Field, whose specification requires thousands of parameters. This force field provides a starting point for further optimization and refitting work to follow.
Load More