PE
Peter Eastman
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(50% Open Access)
Cited by:
6,156
h-index:
26
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

Jumin Lee et al.Nov 12, 2015
+14
J
X
J
Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.
1

OpenMM 7: Rapid development of high performance algorithms for molecular dynamics

Peter Eastman et al.Jul 26, 2017
+10
J
J
P
OpenMM is a molecular dynamics simulation toolkit with a unique focus on extensibility. It allows users to easily add new features, including forces with novel functional forms, new integration algorithms, and new simulation protocols. Those features automatically work on all supported hardware types (including both CPUs and GPUs) and perform well on all of them. In many cases they require minimal coding, just a mathematical description of the desired function. They also require no modification to OpenMM itself and can be distributed independently of OpenMM. This makes it an ideal tool for researchers developing new simulation methods, and also allows those new methods to be immediately available to the larger community.
0

OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation

Peter Eastman et al.Oct 18, 2012
+13
J
M
P
OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures. It is based on a layered architecture: the lower layers function as a reusable library that can be invoked by any application, while the upper layers form a complete environment for running molecular simulations. The library API hides all hardware-specific dependencies and optimizations from the users and developers of simulation programs: they can be run without modification on any hardware on which the API has been implemented. The current implementations of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks. In addition, OpenMM was designed to be extensible, so new hardware architectures can be accommodated and new functionality (e.g., energy terms and integrators) can be easily added.
0
Citation666
0
Save
0

Accelerating molecular dynamic simulation on graphics processing units

Mark Friedrichs et al.Feb 3, 2009
+6
V
P
M
Abstract We describe a complete implementation of all‐atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation running on a single CPU core. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009
2

SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

Jitske Jansen et al.Feb 1, 2022
+204
J
K
J
Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID.
2
Citation160
1
Save
0

Nutmeg and SPICE: Models and Data for Biomolecular Machine Learning

Peter Eastman et al.Sep 25, 2024
T
J
B
P
We describe version 2 of the SPICE data set, a collection of quantum chemistry calculations for training machine learning potentials. It expands on the original data set by adding much more sampling of chemical space and more data on noncovalent interactions. We train a set of potential energy functions called Nutmeg on it. They are based on the TensorNet architecture. They use a novel mechanism to improve performance on charged and polar molecules, injecting precomputed partial charges into the model to provide a reference for the large-scale charge distribution. Evaluation of the new models shows that they do an excellent job of reproducing energy differences between conformations even on highly charged molecules or ones that are significantly larger than the molecules in the training set. They also produce stable molecular dynamics trajectories and are fast enough to be useful for routine simulation of small molecules.
0

MSMBuilder: Statistical Models for Biomolecular Dynamics

Matthew Harrigan et al.Oct 27, 2016
+6
C
M
M
MSMBuilder is a software package for building statistical models of high-dimensional time-series data. It is designed with a particular focus on the analysis of atomistic simulations of biomolecular dynamics such as protein folding and conformational change. MSMBuilder is named for its ability to construct Markov State Models (MSMs), a class of models that has gained favor among computational biophysicists. In addition to both well-established and newer MSM methods, the package includes complementary algorithms for understanding time-series data such as hidden Markov models (HMMs) and time-structure based independent component analysis (tICA). MSMBuilder boasts an easy to use command-line interface, as well as clear and consistent abstractions through its Python API (application programming interface). MSMBuilder is developed with careful consideration for compatibility with the broader machine-learning community by following the design of scikit-learn. The package is used primarily by practitioners of molecular dynamics but is just as applicable to other computational or experimental time-series measurements.
0

OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics

Peter Eastman et al.Dec 6, 2016
+11
J
Y
P
OpenMM is a molecular dynamics simulation toolkit with a unique focus on extensibility. It allows users to easily add new features, including forces with novel functional forms, new integration algorithms, and new simulation protocols. Those features automatically work on all supported hardware types (including both CPUs and GPUs) and perform well on all of them. In many cases they require minimal coding, just a mathematical description of the desired function. They also require no modification to OpenMM itself and can be distributed independently of OpenMM. This makes it an ideal tool for researchers developing new simulation methods, and also allows those new methods to be immediately available to the larger community.
0

Energy Conservation as a Measure of Simulation Accuracy

Peter Eastman et al.Oct 24, 2016
V
P
Energy conservation is widely used as a measure of accuracy for molecular simulations. When reporting rates of energy drift, researchers usually assume it is linear in the simulation length, temperature, and system size. We study these assumptions and find that all three are incorrect. Energy drift is too complicated to characterize with a single number, and a more sophisticated analysis is needed to identify the effects of systematic versus random drift, and of integration error versus numerical error. We further argue that energy conservation is not a reliable measure of accuracy. Having small overall drift on long time scales is not a sufficient condition, and in some cases not a necessary condition, for a simulation to produce meaningful results.
0

Open Force Field Consortium: Escaping atom types using direct chemical perception with SMIRNOFF v0.1

David Mobley et al.Mar 21, 2018
+8
A
C
D
Here, we focus on testing and improving force fields for molecular modeling, which see widespread use in diverse areas of computational chemistry and biomolecular simulation. A key issue affecting the accuracy and transferrability of these force fields is the use of atom typing. Traditional approaches to defining molecular mechanics force fields must encode, within a discrete set of atom types, all information which will ever be needed about the chemical environment; parameters are then assigned by looking up combinations of these atom types in tables. This atom typing approach leads to a wide variety of problems such as inextensible atom-typing machinery, enormous difficulty in expanding parameters encoded by atom types, and unnecessarily proliferation of encoded parameters. Here, we describe a new approach to assigning parameters for molecular mechanics force fields based on the industry standard SMARTS chemical perception language (with extensions to identify specific atoms available in SMIRKS). In this approach, each force field term (bonds, angles, and torsions, and nonbonded interactions) features separate definitions assigned in a hierarchical manner without using atom types. We accomplish this using direct chemical perception, where parameters are assigned directly based on substructure queries operating on the molecule(s) being parameterized, thereby avoiding the intermediate step of assigning atom types --- a step which can be considered indirect chemical perception. Direct chemical perception allows for substantial simplification of force fields, as well as additional generality in the substructure queries. This approach is applicable to a wide variety of (bio)molecular systems, and can greatly reduce the number of parameters needed to create a complete force field. Further flexibility can also be gained by allowing force field terms to be interpolated based on the assignment of fractional bond orders via the same procedure used to assign partial charges. As an example of the utility of this approach, we provide a minimalist small molecule force field derived from Merck's parm@Frosst (an Amber parm99 descendant), in which a parameter definition file only approximately 300 lines long can parameterize a large and diverse spectrum of pharmaceutically relevant small molecule chemical space. We benchmark this minimalist force field on the FreeSolv small molecule hydration free energy set and calculations of densities and dielectric constants from the ThermoML Archive, demonstrating that it achieves comparable accuracy to the Generalized Amber Force Field (GAFF) that consists of many thousands of parameters.