BP
Bradley Paasch
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
406
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A plant genetic network for preventing dysbiosis in the phyllosphere

Tao Chen et al.Apr 8, 2020
The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment. Mutations in genes involved in immune signalling and vesicle trafficking cause defects in the leaf microbiome of Arabidopsis thaliana that result in damage to leaf tissues, suggesting mechanisms by which terrestrial plants control the level and diversity of endophytic phyllosphere microbiota.
0
Citation381
0
Save
0

FlowPot axenic plant growth system for microbiota research

James Kremer et al.Jan 30, 2018
Abstract The presence of resident microbiota on and inside plants is hypothesized to influence many phenotypic attributes of the host. Likewise, host factors and microbe-microbe interactions are believed to influence microbial community assembly. Rigorous testing of these hypotheses necessitates the ability to grow plants in the absence or presence of resident or defined microbiota. To enable such experiments, we developed the scalable and inexpensive FlowPot growth platform. FlowPots have a sterile peat substrate amenable to colonization by microbiota, and the platform supports growth of the model plant Arabidopsis thaliana in the absence or presence of soil-derived microbial communities. Mechanically, the FlowPot system is unique in that it allows for total-saturation of the sterile substrate by “flushing” with water and/or nutrient solution via an irrigation port. The irrigation port also facilitates passive drainage of the substrate, preventing root anoxia. Materials to construct an individual FlowPot total ∼$2. A simple experiment with 12 FlowPots requires ∼4.5 h of labor following peat and seed sterilization. Plants are grown on FlowPots within a standard tissue culture microbox after inoculation, thus the Flowpot system is modular and does not require a sterile growth chamber. Here, we provide a detailed assembly and microbiota inoculation protocol for the FlowPot system. Collectively, this standardized suite of tools and colonization protocols empowers the plant microbiome research community to conduct harmonized experiments to elucidate the rules microbial community assembly, the impact of microbiota on host phenotypes, and mechanisms by which host factors influence the structure and function of plant microbiota.
0
Citation20
0
Save
18

Roles of microbiota in autoimmunity in Arabidopsis

Yi-Qiang Cheng et al.Mar 7, 2023
Over the past three decades, researchers have isolated plant mutants that display constitutively activated defense responses in the absence of pathogen infection. These mutants are called autoimmune mutants and are typically dwarf and/or bearing chlorotic/necrotic lesions. From a genetic screen for Arabidopsis genes involved in maintaining a normal leaf microbiota, we identified TIP GROWTH DEFECTIVE 1 (TIP1), which encodes a S-acyltransferase, as a key player in guarding leaves against abnormal microbiota level and composition under high humidity conditions. The tip1 mutant has several characteristic phenotypes of classical autoimmune mutants, including a dwarf stature, displaying lesions, and having a high basal level of defense gene expression. Gnotobiotic experiments revealed that the autoimmune phenotypes of the tip1 mutant are largely dependent on the presence of microbiota as axenic tip1 plants have markedly reduced autoimmune phenotypes. We found that the microbiota dependency of autoimmune phenotypes is shared by several "lesion mimic"-type autoimmune mutants in Arabidopsis. Interestingly, autoimmune phenotypes caused by mutations in NLR genes do not require the presence of microbiota and can even be partially alleviated by microbiota. Our results therefore suggest the existence of two classes of autoimmunity (microbiota-dependent vs. microbiota-independent) in plants. The observed interplay between autoimmunity and microbiota in the lesion mimic class of autoimmunity is reminiscent of the interactions between autoimmunity and dysbiosis in the animal kingdom.
18
Citation2
0
Save
1

A critical role of a eubiotic microbiota in gating proper immunocompetence inArabidopsis

Bradley Paasch et al.Mar 2, 2023
Abstract Although many studies have shown that microbes can ectopically stimulate or suppress plant immune responses, the fundamental question of whether the entire preexisting microbiota is indeed required for proper development of plant immune response remains unanswered. Using a recently developed peat-based gnotobiotic plant growth system we found that Arabidopsis grown in the absence of a natural microbiota lacked age-dependent maturation of plant immune response and were defective in several aspects of pattern-triggered immunity. Axenic plants exhibited hypersusceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea . Microbiota-mediated immunocompetence was suppressed by rich nutrient conditions, indicating a tripartite interaction between the host, microbiota, and abiotic environment. A synthetic microbiota composed of 48 culturable bacterial strains from the leaf endosphere of healthy Arabidopsis plants was able to substantially restore immunocompetence similar to plants inoculated with a soil-derived community. In contrast, a 52-member dysbiotic synthetic leaf microbiota overstimulated the immune transcriptome. Together, these results provide evidence for a causal role of a eubiotic microbiota in gating proper immunocompetence and age-dependent immunity in plants.
1
Citation1
0
Save