SE
Sarah Ewing
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
1,978
h-index:
33
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Baseline for the Multivariate Comparison of Resting-State Networks

Elena Allen et al.Jan 1, 2011
+30
E
E
E
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease.
1

Image processing and analysis methods for the Adolescent Brain Cognitive Development Study

Donald Hagler et al.Aug 12, 2019
+97
M
S
D
The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of the effects of environmental influences on behavioral and brain development in adolescents. The main objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow them over the course of 10 years to characterize normative brain and cognitive development, the many factors that influence brain development, and the effects of those factors on mental health and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and clinical assessments, bioassays, and careful assessment of substance use, environment, psychopathological symptoms, and social functioning. The data is a resource of unprecedented scale and depth for studying typical and atypical development. The aim of this manuscript is to describe the baseline neuroimaging processing and subject-level analysis methods used by ABCD. Processing and analyses include modality-specific corrections for distortions and motion, brain segmentation and cortical surface reconstruction derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI. This manuscript serves as a methodological reference for users of publicly shared neuroimaging data from the ABCD Study.
1
Citation736
0
Save
68

A Precision Functional Atlas of Network Probabilities and Individual-Specific Network Topography

Robert Hermosillo et al.Jan 13, 2022
+21
L
T
R
SUMMARY The brain is organized into a broad set of functional neural networks. These networks and their various characteristics have been described and scrutinized through in vivo resting state functional magnetic resonance imaging (rs-fMRI). While the basic properties of networks are generally similar between healthy individuals, there is vast variability in the precise topography across the population. These individual differences are often lost in population studies due to population averaging which assumes topographical uniformity. We leveraged precision brain mapping methods to establish a new open-source, method-flexible set of precision functional network atlases: the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. Using participants from the Adolescent Brain Cognitive Development (ABCD) study, single subject precision network maps were generated with two supervised network-matching procedures (template matching and non-negative matrix factorization), an overlapping template matching method for identifying integration zones, as well as an unsupervised community detection algorithm (Infomap). From these individualized maps we also generated probabilistic network maps and integration zones for two demographically-matched groups of n∼3000 each. We demonstrate high reproducibility between groups (Pearson’s r >0.999) and between methods (r=0.96), revealing both regions of high invariance and high variability. Compared to using parcellations based on groups averages, the MIDB Precision Brain Atlas allowed us to derive a set of brain regions that are largely invariant in network topography across populations, which provides more reproducible statistical maps of executive function in brain-wide associations. We also explore an example use case for probabilistic maps, highlighting their potential for use in targeted neuromodulation. The MIDB Precision Brain Atlas is expandable to alternative datasets and methods and is provided open-source with an online web interface to encourage the scientific community to experiment with probabilistic atlases and individual-specific topographies to more precisely relate network phenomenon to functional organization of the human brain.
0

Characterizing Long COVID in Children and Adolescents

Li Wang et al.Aug 21, 2024
+1010
D
M
L
Importance Most research to understand postacute sequelae of SARS-CoV-2 infection (PASC), or long COVID, has focused on adults, with less known about this complex condition in children. Research is needed to characterize pediatric PASC to enable studies of underlying mechanisms that will guide future treatment. Objective To identify the most common prolonged symptoms experienced by children (aged 6 to 17 years) after SARS-CoV-2 infection, how these symptoms differ by age (school-age [6-11 years] vs adolescents [12-17 years]), how they cluster into distinct phenotypes, and what symptoms in combination could be used as an empirically derived index to assist researchers to study the likely presence of PASC. Design, Setting, and Participants Multicenter longitudinal observational cohort study with participants recruited from more than 60 US health care and community settings between March 2022 and December 2023, including school-age children and adolescents with and without SARS-CoV-2 infection history. Exposure SARS-CoV-2 infection. Main Outcomes and Measures PASC and 89 prolonged symptoms across 9 symptom domains. Results A total of 898 school-age children (751 with previous SARS-CoV-2 infection [referred to as infected ] and 147 without [referred to as uninfected ]; mean age, 8.6 years; 49% female; 11% were Black or African American, 34% were Hispanic, Latino, or Spanish, and 60% were White) and 4469 adolescents (3109 infected and 1360 uninfected; mean age, 14.8 years; 48% female; 13% were Black or African American, 21% were Hispanic, Latino, or Spanish, and 73% were White) were included. Median time between first infection and symptom survey was 506 days for school-age children and 556 days for adolescents. In models adjusted for sex and race and ethnicity, 14 symptoms in both school-age children and adolescents were more common in those with SARS-CoV-2 infection history compared with those without infection history, with 4 additional symptoms in school-age children only and 3 in adolescents only. These symptoms affected almost every organ system. Combinations of symptoms most associated with infection history were identified to form a PASC research index for each age group; these indices correlated with poorer overall health and quality of life. The index emphasizes neurocognitive, pain, and gastrointestinal symptoms in school-age children but change or loss in smell or taste, pain, and fatigue/malaise–related symptoms in adolescents. Clustering analyses identified 4 PASC symptom phenotypes in school-age children and 3 in adolescents. Conclusions and Relevance This study developed research indices for characterizing PASC in children and adolescents. Symptom patterns were similar but distinguishable between the 2 groups, highlighting the importance of characterizing PASC separately for these age ranges.
0

Image processing and analysis methods for the Adolescent Brain Cognitive Development Study

Donald Hagler et al.Nov 4, 2018
+142
F
F
D
The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of the effects of environmental influences on behavioral and brain development in adolescents. The ABCD Study is a collaborative effort, including a Coordinating Center, 21 data acquisition sites across the United States, and a Data Analysis and Informatics Center (DAIC). The main objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow them over the course of 10 years to characterize normative brain and cognitive development, the many factors that influence brain development, and the effects of those factors on mental health and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and clinical assessments, bioassays, and careful assessment of substance use, environment, psychopathological symptoms, and social functioning. The data will provide a resource of unprecedented scale and depth for studying typical and atypical development. Here, we describe the baseline neuroimaging processing and subject-level analysis methods used by the ABCD DAIC in the centralized processing and extraction of neuroanatomical and functional imaging phenotypes. Neuroimaging processing and analyses include modality-specific corrections for distortions and motion, brain segmentation and cortical surface reconstruction derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI.
0

Optimizing Individual HIV Testing and Counseling for Emerging Adult Sexual Minority Men (Aged 18 to 24) in Relationships: A Pilot Randomized Controlled Trial of Adjunct Communication Components

Tyrel Starks et al.May 27, 2024
+6
T
G
T