CB
Conrado Bosman
Author with expertise in Neuronal Oscillations in Cortical Networks
University of Amsterdam, Netherlands Institute for Neuroscience, Radboud University Nijmegen
+ 3 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(83% Open Access)
Cited by:
415
h-index:
26
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Top-Down Beta Enhances Bottom-Up Gamma

Craig Richter et al.Oct 11, 2023
P
C
W
C
Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake macaque primary visual area V1, higher visual area V4, and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection. SIGNIFICANCE STATEMENT Contemporary research indicates that the alpha-beta frequency band underlies top-down control, whereas the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency influences from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus-induced gamma-band processing, leading to enhancement of the selected stimulus.
1

Recording of brain activity across spatial scales

CM Lewis et al.Nov 2, 2023
P
C
C
Brain activity reveals exquisite coordination across spatial scales, from local microcircuits to brain-wide networks. Understanding how the brain represents, transforms and communicates information requires simultaneous recordings from distributed nodes of whole brain networks with single-cell resolution. Realizing multi-site recordings from communicating populations is hampered by the need to isolate clusters of interacting cells, often on a day-to-day basis. Chronic implantation of multi-electrode arrays allows long-term tracking of activity. Lithography on thin films provides a means to produce arrays of variable resolution, a high degree of flexibility, and minimal tissue displacement. Sequential application of surface arrays to monitor activity across brain-wide networks and subsequent implantation of laminar arrays to target specific populations enables continual refinement of spatial scale while maintaining coverage.
1

Brain rhythms define distinct interaction networks with differential dependence on anatomy

Julien Vezoli et al.Nov 2, 2023
+4
C
M
J
Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation, and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, networks of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms. Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm per module. To understand how this distinctiveness and modularity arises on a common anatomical backbone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical projection strength. Anatomy was primarily related to coherence and GC, with the largest effect sizes for GC. The correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the gamma rhythm.
1
Paper
Citation67
0
Save
1

Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization

Christopher Lewis et al.Oct 11, 2023
P
T
C
C
Intrinsic covariation of brain activity has been studied across many levels of brain organization. Between visual areas, neuronal activity covaries primarily among portions with similar retinotopic selectivity. We hypothesized that spontaneous interareal coactivation is subserved by neuronal synchronization. We performed simultaneous high-density electrocorticographic recordings across the dorsal aspect of several visual areas in one hemisphere in each of two awake monkeys to investigate spatial patterns of local and interareal synchronization. We show that stimulation-induced patterns of interareal coactivation were reactivated in the absence of stimulation for the visual quadrant covered. Reactivation occurred through both interareal cofluctuation of local activity and interareal phase synchronization. Furthermore, the trial-by-trial covariance of the induced responses recapitulated the pattern of interareal coupling observed during stimulation, i.e., the signal correlation. Reactivation-related synchronization showed distinct peaks in the theta, alpha, and gamma frequency bands. During passive states, this rhythmic reactivation was augmented by specific patterns of arrhythmic correspondence. These results suggest that networks of intrinsic covariation observed at multiple levels and with several recording techniques are related to synchronization and that behavioral state may affect the structure of intrinsic dynamics.
1
Citation52
0
Save
2

A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis

Craig Richter et al.Nov 30, 2023
P
C
W
C
The quantification of covariance between neuronal activities (functional connectivity) requires the observation of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself undergo moment-by-moment fluctuations, which might e.g. lead to fluctuations in single-trial metrics such as reaction time (RT), or may co-fluctuate with the correlation between activity in other brain areas. Yet, quantifying the relation between moment-by-moment co-fluctuations in neuronal correlations is precluded by the fact that neuronal correlations are not defined per single observation. The proposed solution quantifies this relation by first calculating neuronal correlations for all leave-one-out subsamples (i.e. the jackknife replications of all observations) and then correlating these values. Because the correlation is calculated between jackknife replications, we address this approach as jackknife correlation (JC). First, we demonstrate the equivalence of JC to conventional correlation for simulated paired data that are defined per observation and therefore allow the calculation of conventional correlation. While the JC recovers the conventional correlation precisely, alternative approaches, like sorting-and-binning, result in detrimental effects of the analysis parameters. We then explore the case of relating two spectral correlation metrics, like coherence, that require multiple observation epochs, where the only viable alternative analysis approaches are based on some form of epoch subdivision, which results in reduced spectral resolution and poor spectral estimators. We show that JC outperforms these approaches, particularly for short epoch lengths, without sacrificing any spectral resolution. Finally, we note that the JC can be applied to relate fluctuations in any smooth metric that is not defined on single observations.
1

Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography

Rikkert Hindriks et al.Nov 2, 2023
+5
C
C
R
The discovery of hemodynamic (BOLD-fMRI) resting-state networks (RSNs) has brought about a fundamental shift in our thinking about the role of intrinsic brain activity. The electrophysiological underpinnings of RSNs remain largely elusive and it has been shown only recently that electric cortical rhythms are organized into the same RSNs as hemodynamic signals. Most electrophysiological studies into RSNs use magnetoencephalography (MEG) or scalp electroencephalography (EEG), which limits the spatial resolution with which electrophysiological RSNs can be observed. Due to their close proximity to the cortical surface, electrocorticographic (ECoG) recordings can potentially provide a more detailed picture of the functional organization of resting-state cortical rhythms, albeit at the expense of spatial coverage. In this study we propose using source-space spatial independent component analysis (spatial ICA) for identifying generators of resting-state cortical rhythms as recorded with ECoG and for reconstructing their functional connectivity. Network structure is assessed by two kinds of connectivity measures: instantaneous correlations between band-limited amplitude envelopes and oscillatory phase-locking. By simulating rhythmic cortical generators, we find that the reconstruction of oscillatory phase-locking is more challenging than that of amplitude correlations, particularly for low signal-to-noise levels. Specifically, phase-lags can both be over- and underestimated, which troubles the interpretation of lag-based connectivity measures. We illustrate the methodology on somatosensory beta rhythms recorded from a macaque monkey using ECoG. The methodology decomposes the resting-state sensorimotor network into three cortical generators, distributed across primary somatosensory and primary and higher-order motor areas. The generators display significant and reproducible amplitude correlations and phase-locking values with non-zero lags. Our findings illustrate the level of spatial detail attainable with source-projected ECoG and motivates wider use of the methodology for studying resting-state as well as event-related cortical dynamics in macaque and human.
1

Two frequency bands contain the most stimulus-related information in visual cortex

Christopher Lewis et al.May 6, 2020
+7
N
C
C
Abstract Sensory cortices represent the world through the activity of diversely tuned cells. How the activity of single cells is coordinated within populations and across sensory hierarchies is largely unknown. Cortical oscillations may coordinate local and distributed neuronal groups. Using datasets from intracortical multi-electrode recordings and from large-scale electrocorticography (ECoG) grids, we investigated how visual features could be extracted from the local field potential (LFP) and how this compared with the information available from multi-unit activity (MUA). MUA recorded from macaque V1 contained comparable amounts of information as simultaneously recorded LFP power in two frequency bands, one in the alpha-beta band and the other in the gamma band. ECoG-LFP contained information in the same bands as microelectrode-LFP, even when identifying natural scenes. The fact that information was contained in the same bands in both intracortical and ECoG recordings suggests that oscillatory activity could play similar roles at both spatial scales.
0

A theta rhythm in macaque visual cortex and its attentional modulation

Georgios Spyropoulos et al.May 7, 2020
P
C
G
Abstract Theta rhythms govern rodent sniffing and whisking, and human language processing. Human psychophysics suggests a role for theta also in visual attention. Yet, little is known about theta in visual areas and its attentional modulation. We used electrocorticography (ECoG) to record local field potentials (LFPs) simultaneously from areas V1, V2, V4 and TEO of two macaque monkeys performing a selective visual attention task. We found a ≈4 Hz theta rhythm within both the V1-V2 and the V4-TEO region, and theta synchronization between them, with a predominantly feedforward directed influence. ECoG coverage of large parts of these regions revealed a surprising spatial correspondence between theta and visually induced gamma. Furthermore, gamma power was modulated with theta phase. Selective attention to the respective visual stimulus strongly reduced these theta-rhythmic processes, leading to an unusually strong attention effect for V1. Microsaccades (MSs) were partly locked to theta. Yet, neuronal theta rhythms tended to be even more pronounced for epochs devoid of MSs. Thus, we find an MS-independent theta rhythm specific to visually driven parts of V1-V2, which rhythmically modulates local gamma and entrains V4-TEO, and which is strongly reduced by attention. We propose that the less theta-rhythmic and thereby more continuous processing of the attended stimulus serves the exploitation of this behaviorally most relevant information. The theta-rhythmic and thereby intermittent processing of the unattended stimulus likely reflects the ecologically important exploration of less relevant sources of information.
0
Paper
Citation7
0
Save
0

Top-down beta enhances bottom-up gamma

Craig Richter et al.May 6, 2020
P
C
W
C
Abstract Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake male macaque primary visual area V1, higher visual area V4 and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection. Significance Statement Contemporary research indicates that the alpha-beta frequency band underlies top-down control, while the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency oscillations from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus induced gamma-band processing, leading to enhancement of the selected stimulus.
0

The Role of Anatomical Connection Strength for Interareal Communication in Macaque Cortex

Julien Vezoli et al.Oct 24, 2023
+4
C
M
J
What is the relationship between anatomical connection strength and rhythmic synchronization? Simultaneous recordings of 15 cortical areas in two macaque monkeys show that interareal networks are functionally organized in spatially distinct modules with specific synchronization frequencies, i.e. frequency-specific functional connectomes. We relate the functional interactions between 91 area pairs to their anatomical connection strength defined in a separate cohort of twenty six subjects. This reveals that anatomical connection strength predicts rhythmic synchronization and vice-versa, in a manner that is specific for frequency bands and for the feedforward versus feedback direction, even if interareal distances are taken into account. These results further our understanding of structure-function relationships in large-scale networks covering different modality-specific brain regions and provide strong constraints on mechanistic models of brain function. Because this approach can be adapted to non-invasive techniques, it promises to open new perspectives on the functional organization of the human brain.
0
Paper
Citation3
0
Save
Load More