Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
PT
Panagiota Theodoni
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
352
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cortical Microcircuit Dynamics Mediating Binocular Rivalry: The Role of Adaptation in Inhibition

Panagiota Theodoni et al.Jan 1, 2011
Perceptual bistability arises when two conflicting interpretations of an ambiguous stimulus or images in binocular rivalry (BR) compete for perceptual dominance. From a computational point of view competition models based on cross-inhibition and adaptation have shown that noise is a crucial force for rivalry and operates in balance with adaptation in order to explain the observed alternations in perception. In particular, noise-driven transitions and adaptation-driven oscillations define two dynamical regimes and the system operates near its boundary. In order to gain insights into the microcircuit dynamics mediating spontaneous perceptual alternations we used a reduced recurrent attractor-based biophysically realistic spiking network well known for working memory, attention and decision-making, where a spike-frequency adaptation mechanism is implemented to account for perceptual bistability. We, thus, derived a consistently reduced four-variable population rate model using mean-field techniques and tested it on BR data collected from human subjects. Our model accounts for experimental data parameters such as time dominance, coefficient of variation and gamma distribution. In addition, we show that our model also operates on the boundary between noise and adaptation and agrees with Levelt's second revised and fourth propositions. These results show for the first time that a consistent reduction of a biophysically realistic spiking network of integrate and fire neurons with spike frequency adaptation could account for BR. Moreover, we demonstrate that BR can be explained only through the dynamics of the competing neuronal pools, without taking into account the adaptation of inhibitory interneurons..However, adaptation of interneurons affects the optimal parametric space of the system, by decreasing the overall adaptation necessary for the bifurcation to occur.
12

A connectome-based model of conscious access in monkey cortex

Ulysse Klatzmann et al.Feb 22, 2022
Abstract A growing body of evidence suggests that conscious perception of a sensory stimulus triggers an all-or-none activity across multiple cortical areas, a phenomenon called ‘ignition’. In contrast, the same stimulus, when undetected, induces only transient activity. In this work, we report a large-scale model of the macaque cortex based on recently quantified structural connectome data. We use this model to simulate a detection task, and demonstrate how a dynamical bifurcation mechanism produces ignition-like events in the model network. The model predicts that feedforward excitatory transmission is primarily mediated by the fast AMPA receptors to ensure rapid signal propagation from sensory to associative areas. In contrast, a greater proportion of the inter-areal feedback projections and local recurrent excitation depend on the slow NMDA receptors, to ensure ignition of distributed frontoparietal activity. Our model predicts, counterintuitively, that fast-responding sensory areas contain a higher ratio of NMDA to AMPA receptors compared to association cortical areas that show slow, sustained activity. We validate this prediction using in-vitro receptor autoradiography data. Finally, we show how this model can account for various behavioral and physiological effects linked to consciousness. Together, these findings clarify the neurophysiological mechanisms of conscious access in the primate cortex and support the concept that gradients of receptor densities along the cortical hierarchy contribute to distributed cognitive functions.
12
Citation8
0
Save
0

Theta-modulation drives the emergence of network-wide connectivity patterns underlying replay in a model of hippocampal place cells

Panagiota Theodoni et al.Mar 20, 2017
Summary Place cells of the rodent hippocampus fire action potentials when the animal traverses a particular spatial location in a given environment. Therefore, for any given trajectory one will observe a repeatable sequence of place cell activations as the animal explores. Interestingly, when the animal is quiescent or sleeping, one can observe similar sequences of activation, although at a highly compressed rate, known as “replays”. It is hypothesized that this replay underlies the process of memory consolidation whereby memories are “transferred” from hippocampus to cortex. However, it remains unclear how the memory of a particular environment is actually encoded in the place cell activity and what the mechanism for replay is. Here we study how plasticity during spatial exploration shapes the patterns of synaptic connectivity in model networks of place cells. Specifically, we show how plasticity leads to the emergence of patterns of activity which represent the spatial environment learned. These states become spontaneously active when the animal is quiescent, reproducing the phenomenology of replays. Interestingly, replay emerges most rapidly when place cell activity is modulated by an ongoing oscillation. The optimal oscillation frequency can be calculated analytically, is directly related to the plasticity rule, and for experimentally determined values of the plasticity window in rodent slices gives values in the theta range. A major prediction of this model is that the pairwise correlation of place cells which encode for neighboring locations should increase during initial exploration, leading up to the critical transition. We find such an increase in a population of simultaneously recorded CA1 pyramidal cells from a rat exploring a novel track. Furthermore, in a rat in which hippocampal theta is reduced through inactivation of the medial septum we find no such increase. Our model is the first to show how theta-modulation can speed up learning by facilitating the emergence of environment-specific network-wide patterns of synaptic connectivity in hippocampal circuits.
0
Citation2
0
Save