RL
Runduo Liu
Author with expertise in Computational Methods in Drug Discovery
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
1
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Discovery of highly potent phosphodiesterase-1 inhibitors by a combined-structure free energy perturbation approach

Zhe Li et al.Jun 1, 2024
+6
R
M
Z
Accurate receptor/ligand binding free energy calculations can greatly accelerate drug discovery by identifying highly potent ligands. By simulating the change from one compound structure to another, the relative binding free energy (RBFE) change can be calculated based on the theoretically rigorous free energy perturbation (FEP) method. However, existing FEP-RBFE approaches may face convergence challenges due to difficulties in simulating non-physical intermediate states, which can lead to increased computational costs to obtain the converged results. To fundamentally overcome these issues and accelerate drug discovery, a new combined-structure RBFE (CS-FEP) calculation strategy was proposed, which solved the existing issues by constructing a new alchemical pathway, smoothed the alchemical transformation, increased the phase-space overlap between adjacent states, and thus significantly increased the convergence and accelerated the relative binding free energy calculations. This method was extensively tested in a practical drug discovery effort by targeting phosphodiesterase-1 (PDE1). Starting from a PDE1 inhibitor (compound 9, IC50 = 16.8 μmol/L), the CS-FEP guided hit-to-lead optimizations resulted in a promising lead (11b and its mesylate salt formulation 11b-Mesylate, IC50 = 7.0 nmol/L), with ∼2400-fold improved inhibitory activity. Further experimental studies revealed that the lead showed reasonable metabolic stability and significant anti-fibrotic effects in vivo.
0
Citation1
0
Save
0

Convergence-Adaptive Roundtrip Method Enables Rapid and Accurate FEP Calculations

Yang Yao et al.Sep 5, 2024
+4
W
R
Y
The free energy perturbation (FEP) method is a powerful technique for accurate binding free energy calculations, which is crucial for identifying potent ligands with a high affinity in drug discovery. However, the widespread application of FEP is limited by the high computational cost required to achieve equilibrium sampling and the challenges in obtaining converged predictions. In this study, we present the convergence-adaptive roundtrip (CAR) method, which is an enhanced adaptive sampling approach, to address the key challenges in FEP calculations, including the precision-efficiency tradeoff, sampling efficiency, and convergence assessment. By employing on-the-fly convergence analysis to automatically adjust simulation times, enabling efficient traversal of the important phase space through rapid propagation of conformations between different states and eliminating the need for multiple parallel simulations, the CAR method increases convergence and minimizes computational overhead while maintaining calculation accuracy. The performance of the CAR method was evaluated through relative binding free energy (RBFE) calculations on benchmarks comprising four diverse protein-ligand systems. The results demonstrated a significant speedup of over 8-fold compared to conventional FEP methods while maintaining high accuracy. The overall
0

FEP-based screening prompts drug repositioning against COVID-19

Zhe Li et al.Mar 25, 2020
+16
Y
Y
Z
The new coronavirus COVID-19, also known as SARS-CoV-2, has infected more than 300,000 patients and become a global health emergency due to the very high risk of spread and impact of COVID-19. There are no specific drugs or vaccines against COVID-19, thus effective antiviral agents are still urgently needed to combat this virus. Herein, the FEP (free energy perturbation)-based screening strategy is newly derived as a rapid protocol to accurately reposition potential agents against COVID-19 by targeting viral proteinase Mpro. Restrain energy distribution (RED) function was derived to optimize the alchemical pathway of FEP, which greatly accelerated the calculations and first made FEP possible in the virtual screening of the FDA-approved drugs database. As a result, fifteen out of twenty-five drugs validated in vitro exhibited considerable inhibitory potencies towards Mpro. Among them, the most potent Mpro inhibitor dipyridamole potentially inhibited NF-kB signaling pathway and inflammatory responses, and has just finished the first round clinical trials. Our result demonstrated that the FEP-based screening showed remarkable advantages in prompting drug repositioning against COVID-19.