HH
Hajime Hirase
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(62% Open Access)
Cited by:
7,772
h-index:
48
/
i10-index:
86
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Accuracy of Tetrode Spike Separation as Determined by Simultaneous Intracellular and Extracellular Measurements

Kenneth Harris et al.Jul 1, 2000
Simultaneous recording from large numbers of neurons is a prerequisite for understanding their cooperative behavior. Various recording techniques and spike separation methods are being used toward this goal. However, the error rates involved in spike separation have not yet been quantified. We studied the separation reliability of “tetrode” (4-wire electrode)-recorded spikes by monitoring simultaneously from the same cell intracellularly with a glass pipette and extracellularly with a tetrode. With manual spike sorting, we found a trade-off between Type I and Type II errors, with errors typically ranging from 0 to 30% depending on the amplitude and firing pattern of the cell, the similarity of the waveshapes of neighboring neurons, and the experience of the operator. Performance using only a single wire was markedly lower, indicating the advantages of multiple-site monitoring techniques over single-wire recordings. For tetrode recordings, error rates were increased by burst activity and during periods of cellular synchrony. The lowest possible separation error rates were estimated by a search for the best ellipsoidal cluster shape. Human operator performance was significantly below the estimated optimum. Investigation of error distributions indicated that suboptimal performance was caused by inability of the operators to mark cluster boundaries accurately in a high-dimensional feature space. We therefore hypothesized that automatic spike-sorting algorithms have the potential to significantly lower error rates. Implementation of a semi-automatic classification system confirms this suggestion, reducing errors close to the estimated optimum, in the range 0–8%.
0

Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat

Jozsef Csicsvari et al.Jan 1, 1999
We examined whether excitation and inhibition are balanced in hippocampal cortical networks. Extracellular field and single-unit activity were recorded by multiple tetrodes and multisite silicon probes to reveal the timing of the activity of hippocampal CA1 pyramidal cells and classes of interneurons during theta waves and sharp wave burst (SPW)-associated field ripples. The somatic and dendritic inhibition of pyramidal cells was deduced from the activity of interneurons in the pyramidal layer [int(p)] and in the alveus and st. oriens [int(a/o)], respectively. Int(p) and int(a/o) discharged an average of 60 and 20 degrees before the population discharge of pyramidal cells during the theta cycle, respectively. SPW ripples were associated with a 2.5-fold net increase of excitation. The discharge frequency of int(a/o) increased, decreased ("anti-SPW" cells), or did not change ("SPW-independent" cells) during SPW, suggesting that not all interneurons are innervated by pyramidal cells. Int(p) either fired together with (unimodal cells) or both before and after (bimodal cells) the pyramidal cell burst. During fast-ripple oscillation, the activity of interneurons in both the int(p) and int(a/o) groups lagged the maximum discharge probability of pyramidal neurons by 1-2 msec. Network state changes, as reflected by field activity, covaried with changes in the spike train dynamics of single cells and their interactions. Summed activity of parallel-recorded interneurons, but not of pyramidal cells, reliably predicted theta cycles, whereas the reverse was true for the ripple cycles of SPWs. We suggest that network-driven excitability changes provide temporal windows of opportunity for single pyramidal cells to suppress, enable, or facilitate selective synaptic inputs.
0

Replay and Time Compression of Recurring Spike Sequences in the Hippocampus

Zoltán Nádasdy et al.Nov 1, 1999
Information in neuronal networks may be represented by the spatiotemporal patterns of spikes. Here we examined the temporal coordination of pyramidal cell spikes in the rat hippocampus during slow-wave sleep. In addition, rats were trained to run in a defined position in space (running wheel) to activate a selected group of pyramidal cells. A template-matching method and a joint probability map method were used for sequence search. Repeating spike sequences in excess of chance occurrence were examined by comparing the number of repeating sequences in the original spike trains and in surrogate trains after Monte Carlo shuffling of the spikes. Four different shuffling procedures were used to control for the population dynamics of hippocampal neurons. Repeating spike sequences in the recorded cell assemblies were present in both the awake and sleeping animal in excess of what might be predicted by random variations. Spike sequences observed during wheel running were "replayed" at a faster timescale during single sharp-wave bursts of slow-wave sleep. We hypothesize that the endogenously expressed spike sequences during sleep reflect reactivation of the circuitry modified by previous experience. Reactivation of acquired sequences may serve to consolidate information.
0
Citation905
0
Save
0

Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features

Péter Barthó et al.Apr 6, 2004
Most neuronal interactions in the cortex occur within local circuits. Because principal cells and GABAergic interneurons contribute differently to cortical operations, their experimental identification and separation is of utmost important. We used 64-site two-dimensional silicon probes for high-density recording of local neurons in layer 5 of the somatosensory and prefrontal cortices of the rat. Multiple-site monitoring of units allowed for the determination of their two-dimensional spatial position in the brain. Of the ∼60,000 cell pairs recorded, 0.2% showed robust short-term interactions. Units with significant, short-latency (<3 ms) peaks following their action potentials in their cross-correlograms were characterized as putative excitatory (pyramidal) cells. Units with significant suppression of spiking of their partners were regarded as putative GABAergic interneurons. A portion of the putative interneurons was reciprocally connected with pyramidal cells. Neurons physiologically identified as inhibitory and excitatory cells were used as templates for classification of all recorded neurons. Of the several parameters tested, the duration of the unfiltered (1 Hz to 5 kHz) spike provided the most reliable clustering of the population. High-density parallel recordings of neuronal activity, determination of their physical location and their classification into pyramidal and interneuron classes provide the necessary tools for local circuit analysis.
Load More