MN
Maiken Nedergaard
Author with expertise in Brain Fluid Dynamics and Waste Clearance Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
73
(67% Open Access)
Cited by:
26,682
h-index:
114
/
i10-index:
255
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Uniquely Hominid Features of Adult Human Astrocytes

Nancy Oberheim et al.Mar 11, 2009
Defining the microanatomic differences between the human brain and that of other mammals is key to understanding its unique computational power. Although much effort has been devoted to comparative studies of neurons, astrocytes have received far less attention. We report here that protoplasmic astrocytes in human neocortex are 2.6-fold larger in diameter and extend 10-fold more GFAP (glial fibrillary acidic protein)-positive primary processes than their rodent counterparts. In cortical slices prepared from acutely resected surgical tissue, protoplasmic astrocytes propagate Ca 2+ waves with a speed of 36 μm/s, approximately fourfold faster than rodent. Human astrocytes also transiently increase cystosolic Ca 2+ in response to glutamatergic and purinergic receptor agonists. The human neocortex also harbors several anatomically defined subclasses of astrocytes not represented in rodents. These include a population of astrocytes that reside in layers 5–6 and extend long fibers characterized by regularly spaced varicosities. Another specialized type of astrocyte, the interlaminar astrocyte, abundantly populates the superficial cortical layers and extends long processes without varicosities to cortical layers 3 and 4. Human fibrous astrocytes resemble their rodent counterpart but are larger in diameter. Thus, human cortical astrocytes are both larger, and structurally both more complex and more diverse, than those of rodents. On this basis, we posit that this astrocytic complexity has permitted the increased functional competence of the adult human brain.
0
Paper
Citation1,251
0
Save
0

Brain-wide pathway for waste clearance captured by contrast-enhanced MRI

Jeffrey Iliff et al.Feb 21, 2013
The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.
0
Paper
Citation909
0
Save
0

Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

Jeffrey Iliff et al.Dec 3, 2014
Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the "glymphatic" pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration.
0

Astrocytic complexity distinguishes the human brain

Nancy Oberheim et al.Aug 31, 2006
One of the most distinguishing features of the adult human brain is the complexity and diversity of its cortical astrocytes. Human protoplasmic astrocytes manifest a threefold larger diameter and have tenfold more primary processes than those of rodents. In all mammals, protoplasmic astrocytes are organized into spatially non-overlapping domains that encompass both neurons and vasculature. Yet unique to humans and primates are additional populations of layer 1 interlaminar astrocytes that extend long (millimeter) fibers, and layer 5–6 polarized astrocytes that also project distinctive long processes. We propose that human cortical evolution has been accompanied by increasing complexity in the form and function of astrocytes, which reflects an expansion of their functional roles in synaptic modulation and cortical circuitry. One of the most distinguishing features of the adult human brain is the complexity and diversity of its cortical astrocytes. Human protoplasmic astrocytes manifest a threefold larger diameter and have tenfold more primary processes than those of rodents. In all mammals, protoplasmic astrocytes are organized into spatially non-overlapping domains that encompass both neurons and vasculature. Yet unique to humans and primates are additional populations of layer 1 interlaminar astrocytes that extend long (millimeter) fibers, and layer 5–6 polarized astrocytes that also project distinctive long processes. We propose that human cortical evolution has been accompanied by increasing complexity in the form and function of astrocytes, which reflects an expansion of their functional roles in synaptic modulation and cortical circuitry.
Load More