MG
Marc Gershow
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
1,910
h-index:
20
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans

Andrew Leifer et al.Jan 16, 2011
An optogenetic illumination system based on the use of a digital micromirror device and video tracking software is reported, which allows real-time light delivery with high spatial resolution to specified targets in freely moving Caenorhabditis elegans. Also in this issue, Stirman et al. report a similar illumination system using a liquid crystal display projector. Both methods allow optogenetic perturbation of a variety of neural circuits in the behaving worm. We present an optogenetic illumination system capable of real-time light delivery with high spatial resolution to specified targets in freely moving Caenorhabditis elegans. A tracking microscope records the motion of an unrestrained worm expressing channelrhodopsin-2 or halorhodopsin in specific cell types. Image processing software analyzes the worm's position in each video frame, rapidly estimates the locations of targeted cells and instructs a digital micromirror device to illuminate targeted cells with laser light of the appropriate wavelengths to stimulate or inhibit activity. Because each cell in an unrestrained worm is a rapidly moving target, our system operates at high speed (∼50 frames per second) to provide high spatial resolution (∼30 μm). To test the accuracy, flexibility and utility of our system, we performed optogenetic analyses of the worm motor circuit, egg-laying circuit and mechanosensory circuits that have not been possible with previous methods.
37

Circuits for integrating learnt and innate valences in the fly brain

Claire Eschbach et al.Apr 24, 2020
Abstract Animal behavior is shaped both by evolution and by individual experience. In many species parallel brain pathways are thought to encode innate and learnt behavior drives and as a result may link the same sensory cue to different actions if innate and learnt drives are in opposition. How these opposing drives are integrated into a single coherent action is not well understood. In insects, the Mushroom Body Output Neurons (MBONs) and the Lateral Horn Neurons (LHNs) are thought to provide the learnt and innate drives, respectively. However their patterns of convergence and the mechanisms by which their outputs are used to select actions are not well understood. We used electron microscopy reconstruction to comprehensively map the downstream targets of all MBONs in Drosophila larva and characterise their patterns of convergence with LHNs. We discovered convergence neurons that receive direct input from MBONs and LHNs and compare opposite behaviour drives. Functional imaging and optogenetic manipulation suggest these convergence neurons compute the overall predicted value of approaching or avoiding an odor and mediate action selection. Our study describes the circuit mechanisms allowing integration of opposing drives from parallel olfactory pathways.
37
Citation16
0
Save
0

Neural substrates of navigational decision-making in Drosophila larva anemotaxis

Tihana Jovanic et al.Jan 8, 2018
Small animals use sensory information to navigate their environment in order to reach more favorable conditions. In gradients of light, temperature, odors and C02, Drosophila larvae alternate periods of runs and turns, regulating the frequency size and direction of turns, to move in a favorable direction. Whether larvae use the same strategies when navigating in response to somatosensory input is unknown. Further, while many of the sensory neurons that mediate navigation behaviors have been described, where and how these navigational strategies are implemented in the central nervous system and controlled by neuronal circuit elements is not well known. Here we characterize for the first time the navigational strategies of Drosophila larvae in gradients of air-current speeds using high-throughput behavioral assays and quantitative behavioral analysis. We find that larvae extend runs towards favorable directions and shorten runs in unfavorable directions, and that larvae regulate both the direction and amplitudes of turns. These results suggest similar central decision-making mechanisms underlie navigation behaviors in somatosensory and other sensory modalities. By silencing the activity of individual neurons and very sparse expression patterns (2 or 3 neuron types), we further identify the sensory neurons and circuit elements in the ventral nerve cord and brain of the larva required for navigational decisions during anemotaxis. The phenotypes of these central neurons are consistent with a mechanism where the increase of the turning rate in unfavorable conditions and decrease in turning rate in favorable conditions are independently controlled. In addition, we find phenotypes that suggest that the decisions of whether and which way to turn are controlled independently. Our study reveals that different neuronal modules in the nerve cord and brain mediate different aspects of navigational decision making. The neurons identified in our screen provide a basis for future detailed mechanistic understanding of the circuit principles of navigational decision-making.
0

CRASH2p: Closed-loop Two Photon Imaging in Freely Moving Animals

P. McNulty et al.May 26, 2024
Direct measurement of neural activity in freely moving animals is essential for understanding how the brain controls and represents behaviors. Genetically encoded calcium indicators report neural activity as changes in fluorescence intensity, but brain motion confounds quantitative measurement of fluorescence. Translation, rotation, and deformation of the brain and the movements of intervening scattering or auto-fluorescent tissue all alter the amount of fluorescent light captured by a microscope. Compared to single-photon approaches, two photon microscopy is less sensitive to scattering and off-target fluorescence, but more sensitive to motion, and two photon imaging has always required anchoring the microscope to the brain. We developed a closed-loop resonant axial-scanning high-speed two photon (CRASH2p) microscope for real-time 3D motion correction in unrestrained animals, without implantation of reference markers. We complemented CRASH2p with a novel scanning strategy and a multi-stage registration pipeline. We performed volumetric ratiometrically corrected functional imaging in the CNS of freely moving Drosophila larvae and discovered previously unknown neural correlates of behavior.
0

Proprioceptive neurons of larval Drosophila melanogaster show direction selective activity requiring the mechanosensory channel TMC.

Liping He et al.Nov 9, 2018
Drosophila Transmembrane channel-like (Tmc) is a protein that functions in larval proprioception. The closely related TMC1 protein is required for mammalian hearing, and is a pore forming subunit of the hair cell mechanotransduction channel. In hair cells, TMC1 is gated by small deflections of microvilli that produce tension on extracellular tip-links that connect adjacent villi. How Tmc might be gated in larval proprioceptors, which are neurons having a morphology that is completely distinct from hair cells, is unknown. Here, we have used high-speed confocal microscopy to both measure displacements of proprioceptive sensory dendrites during larval movement, and to optically measure neural activity of the moving proprioceptors. Unexpectedly, the pattern of dendrite deformation for distinct neurons was unique and differed depending on the direction of locomotion: ddaE neuron dendrites were strongly curved by forward locomotion while the dendrites of ddaD were more strongly deformed by backward locomotion. Furthermore, GCaMP6f calcium signals recorded in the proprioceptive neurons during locomotion indicated tuning to the direction of movement. ddaE showed strong activation during forward locomotion while ddaD showed responses that were strongest during backwards locomotion. Peripheral proprioceptive neurons in animals mutant for Tmc showed a near complete loss of movement related calcium signals. As the strength of the responses of wild type animals was correlated with dendrite curvature, we propose that Tmc channels may be activated by membrane curvature in dendrites that are exposed to strain. Our findings begin to explain how distinct cellular systems rely on a common molecular pathway for mechanosensory responses.
1

Switch-like and persistent memory formation in individual Drosophila larvae

Amanda Lesar et al.Apr 15, 2021
Associative learning allows animals to use past experience to predict future events. The circuits underlying memory formation support immediate and sustained changes in function, often in response to a single example. Larval Drosophila is a genetic model for memory formation that can be accessed at molecular, synaptic, cellular, and circuit levels, often simultaneously, but existing behavioral assays for larval learning and memory do not address individual animals, and it has been difficult to form long lasting memories, especially those requiring synaptic re-organization. We demonstrate a new assay for learning and memory capable of tracking the changing preferences of individual larvae. We use this assay to explore how activation of a pair of reward neurons changes the response to the innately aversive gas Carbon Dioxide (CO 2 ). We confirm that when coupled to odor presentation in appropriate temporal sequence, optogenetic reward reduces avoidance of CO 2 . We find that learning is switch-like: all-or-none and quantized in two states. Memories can be extinguished by repeated unrewarded exposure to CO 2 but are stabilized against extinction by repeated training or overnight consolidation. Finally, we demonstrate long-lasting protein synthesis dependent and independent memory formation.