AD
Arthur Dondi
Author with expertise in Viral RNA Silencing and Plant Immunity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
27
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

Within-patient genetic diversity of SARS-CoV-2

Jack Kuipers et al.Oct 12, 2020
Abstract SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, is evolving into different genetic variants by accumulating mutations as it spreads globally. In addition to this diversity of consensus genomes across patients, RNA viruses can also display genetic diversity within individual hosts, and co-existing viral variants may affect disease progression and the success of medical interventions. To systematically examine the intra-patient genetic diversity of SARS-CoV-2, we processed a large cohort of 3939 publicly-available deeply sequenced genomes with specialised bioinformatics software, along with 749 recently sequenced samples from Switzerland. We found that the distribution of diversity across patients and across genomic loci is very unbalanced with a minority of hosts and positions accounting for much of the diversity. For example, the D614G variant in the Spike gene, which is present in the consensus sequences of 67.4% of patients, is also highly diverse within hosts, with 29.7% of the public cohort being affected by this coexistence and exhibiting different variants. We also investigated the impact of several technical and epidemiological parameters on genetic heterogeneity and found that age, which is known to be correlated with poor disease outcomes, is a significant predictor of viral genetic diversity. Author Summary Since it arose in late 2019, the new coronavirus (SARS-CoV-2) behind the COVID-19 pandemic has mutated and evolved during its global spread. Individual patients may host different versions, or variants, of the virus, hallmarked by different mutations. We examine the diversity of genetic variants coexisting within patients across a cohort of 3939 publicly accessible samples and 749 recently sequenced samples from Switzerland. We find that a small number of patients carry most of the diversity, and that patients with more diversity tend to be older. We also find that most of the diversity is concentrated in certain regions and positions of the virus genome. In particular, we find that a variant reported to increase infectivity is among the most diverse positions. Our study provides a large-scale survey of within-patient diversity of the SARS-CoV-2 genome.
18
Citation19
0
Save
0

Detection of isoforms and genomic alterations by high-throughput full-length single-cell RNA sequencing in ovarian cancer

Arthur Dondi et al.Dec 14, 2022
Abstract Understanding the complex background of cancer requires genotype-phenotype information in single-cell resolution. Here, we perform long-read single-cell RNA sequencing (scRNA-seq) on clinical samples from three ovarian cancer patients presenting with omental metastasis and increase the PacBio sequencing depth to 12,000 reads per cell. Our approach captures 152,000 isoforms, of which over 52,000 are novel. Isoform-level analysis accounting for non-coding isoforms reveals 20% overestimation of protein-coding gene expression on average. We also detect cell type-specific isoform and poly-adenylation site usage in tumor and mesothelial cells, and find that mesothelial cells transition into cancer-associated fibroblasts in the metastasis, partly through the TGF-β/miR-29/Collagen axis. Furthermore, we identify gene fusions, including an experimentally validated IGF2BP2::TESPA1 fusion, which is misclassified as high TESPA1 expression in matched short-read data, and call mutations confirmed by targeted NGS cancer gene panel results. With these findings, we envision long-read scRNA-seq to become increasingly relevant in oncology and personalized medicine.
0
Citation7
0
Save
0

CTAT-LR-fusion: accurate fusion transcript identification from long and short read isoform sequencing at bulk or single cell resolution

Qian Qin et al.Feb 28, 2024
Gene fusions are found as cancer drivers in diverse adult and pediatric cancers. Accurate detection of fusion transcripts is essential in cancer clinical diagnostics, prognostics, and for guiding therapeutic development. Most currently available methods for fusion transcript detection are compatible with Illumina RNA-seq involving highly accurate short read sequences. Recent advances in long read isoform sequencing enable the detection of fusion transcripts at unprecedented resolution in bulk and single cell samples. Here we developed a new computational tool CTAT-LR-fusion to detect fusion transcripts from long read RNA-seq with or without companion short reads, with applications to bulk or single cell transcriptomes. We demonstrate that CTAT-LR-fusion exceeds fusion detection accuracy of alternative methods as benchmarked with simulated and real long read RNA-seq. Using short and long read RNA-seq, we further apply CTAT-LR-fusion to bulk transcriptomes of nine tumor cell lines, and to tumor single cells derived from a melanoma sample and three metastatic high grade serous ovarian carcinoma samples. In both bulk and in single cell RNA-seq, long isoform reads yielded higher sensitivity for fusion detection than short reads with notable exceptions. By combining short and long reads in CTAT-LR-fusion, we are able to further maximize detection of fusion splicing isoforms and fusion-expressing tumor cells. CTAT-LR-fusion is available at https://github.com/TrinityCTAT/CTAT-LR-fusion/wiki.
0
Citation1
0
Save