VC
Vincenzo Capece
Author with expertise in MicroRNA Regulation in Cancer and Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
1,323
h-index:
17
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Changes in m6A RNA methylation contribute to heart failure progression by modulating translation

Tea Berulava et al.Dec 17, 2019
ABSTRACT Aims Deregulation of epigenetic processes and aberrant gene expression are important mechanisms in heart failure. Here we studied the potential relevance of m6A RNA methylation in heart failure development. Methods and results We analysed m6A RNA methylation via next‐generation sequencing. We found that approximately one quarter of the transcripts in the healthy mouse and human heart exhibit m6A RNA methylation. During progression to heart failure we observed that changes in m6A RNA methylation exceed changes in gene expression both in mouse and human. RNAs with altered m6A RNA methylation were mainly linked to metabolic and regulatory pathways, while changes in RNA expression level mainly represented changes in structural plasticity. Mechanistically, we could link m6A RNA methylation to altered RNA translation and protein production. Interestingly, differentially methylated but not differentially expressed RNAs showed differential polysomal occupancy, indicating transcription‐independent modulation of translation. Furthermore, mice with a cardiomyocyte restricted knockout of the RNA demethylase Fto exhibited an impaired cardiac function compared to control mice. Conclusions We could show that m6A landscape is altered in heart hypertrophy and heart failure. m6A RNA methylation changes lead to changes in protein abundance, unconnected to mRNA levels. This uncovers a new transcription‐independent mechanisms of translation regulation. Therefore, our data suggest that modulation of epitranscriptomic processes such as m6A methylation might be an interesting target for therapeutic interventions.
0
Citation241
0
Save
18

Within-patient genetic diversity of SARS-CoV-2

Jack Kuipers et al.Oct 12, 2020
Abstract SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, is evolving into different genetic variants by accumulating mutations as it spreads globally. In addition to this diversity of consensus genomes across patients, RNA viruses can also display genetic diversity within individual hosts, and co-existing viral variants may affect disease progression and the success of medical interventions. To systematically examine the intra-patient genetic diversity of SARS-CoV-2, we processed a large cohort of 3939 publicly-available deeply sequenced genomes with specialised bioinformatics software, along with 749 recently sequenced samples from Switzerland. We found that the distribution of diversity across patients and across genomic loci is very unbalanced with a minority of hosts and positions accounting for much of the diversity. For example, the D614G variant in the Spike gene, which is present in the consensus sequences of 67.4% of patients, is also highly diverse within hosts, with 29.7% of the public cohort being affected by this coexistence and exhibiting different variants. We also investigated the impact of several technical and epidemiological parameters on genetic heterogeneity and found that age, which is known to be correlated with poor disease outcomes, is a significant predictor of viral genetic diversity. Author Summary Since it arose in late 2019, the new coronavirus (SARS-CoV-2) behind the COVID-19 pandemic has mutated and evolved during its global spread. Individual patients may host different versions, or variants, of the virus, hallmarked by different mutations. We examine the diversity of genetic variants coexisting within patients across a cohort of 3939 publicly accessible samples and 749 recently sequenced samples from Switzerland. We find that a small number of patients carry most of the diversity, and that patients with more diversity tend to be older. We also find that most of the diversity is concentrated in certain regions and positions of the virus genome. In particular, we find that a variant reported to increase infectivity is among the most diverse positions. Our study provides a large-scale survey of within-patient diversity of the SARS-CoV-2 genome.
18
Citation19
0
Save
1

H3 acetylation selectively promotes basal progenitor proliferation and neocortex expansion by activating TRNP1 expression

Cemil Kerimoğlu et al.Mar 6, 2021
ABSTRACT Increase in the size of human neocortex, acquired in evolution, accounts for the unique cognitive capacity of humans. This expansion appears to reflect the evolutionarily-enhanced proliferative ability of basal progenitors (BPs) in mammalian cortex, which may have been acquired through epigenetic alterations in BPs. However, whether or how the epigenome in BPs differs across species is not known. Here, we report that histone H3 acetylation is a key epigenetic regulation in BP amplification and cortical expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP proliferation, increasing the size and folding of the normally smooth mouse neocortex. Mechanistically, H3K9ac drives BP amplification by increasing expression of the evolutionarily regulated gene, TRNP1, in the developing cortex. Our findings demonstrate a previously unknown mechanism that controls cortical architecture. One Sentence Summary H3K9ac promotes basal progenitor amplification, neocortex expansion and gyrification by activating TRNP1 expression in evolution.