DS
Dharmendra Soni
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
16
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Suppression of miR-155 attenuates lung cytokine storm induced by SARS-CoV-2 infection in human ACE2-transgenic mice

Dharmendra Soni et al.Dec 17, 2020
+3
S
J
D
ABSTRACT Coronavirus disease 2019 (COVID-19) is a recent global pandemic. It is a deadly human viral disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a high rate of infection, morbidity and mortality. Therefore, there is a great urgency to develop new therapies to control, treat and prevent this disease. Endogenous microRNAs (miRNAs, miRs) of the viral host are key molecules in preventing viral entry and replication, and building an antiviral cellular defense. Here, we have analyzed the role of miR-155, one of the most powerful drivers of host antiviral responses including immune and inflammatory responses, in the pathogenicity of SARS-CoV-2 infection. Subsequently, we have analyzed the potency of anti-miR-155 therapy in a COVID-19 mouse model (mice transgenic for human angiotensin I-converting enzyme 2 receptor (tg-mice hACE2)). We report for the first time that miR-155 expression is elevated in COVID-19 patients. Further, our data indicate that the viral load as well as miR-155 levels are higher in male relative to female patients. Moreover, we find that the delivery of anti-miR-155 to SARS-CoV-2-infected tg-mice hACE2 effectively suppresses miR-155 expression, and leads to improved survival and clinical scores. Importantly, anti-miR-155-treated tg-mice hACE2 infected with SARS-CoV-2 not only exhibit reduced levels of pro-inflammatory cytokines, but also have increased anti-viral and anti-inflammatory cytokine responses in the lungs. Thus, our study suggests anti-miR-155 as a novel therapy for mitigating the lung cytokine storm induced by SARS-CoV-2 infection.
9
Citation16
0
Save
1

A core transcriptional response for biofilm formation by Y. pseudotuberculosis

A. Mahmud et al.Mar 11, 2022
+5
D
K
A
Abstract Previous transcriptional profiling of the enteropathogen Yersinia pseudotuberculosis during persistent stages of colonisation of mouse cecal lymphoid follicles indicated the possible involvement of biofilm in infection maintenance. Not much is known about the mechanisms responsible for biofilm formation by this pathogen, and most current knowledge is based on results of experiments conducted using the related Y. pestis pathogen that forms biofilm in the flea gut. In this study, we performed transcriptional profiling of Y. pseudotuberculosis in biofilms from different biofilm-inducing conditions, bile exposure, amino acid deprivation and in vivo mimicking conditions with and without oxygen. The comparison of differential expression of genes in biofilm versus planktonic bacteria showed a set of 54 core genes that were similarly regulated, independent of inducing condition. This set included many genes that were previously shown to be associated with biofilms, such as hutG, hsmF, hmsT and cpxP that were upreg-ulated and other genes such as hmsP and rfaH that were downregulated. There were also novel biofilm-associated genes, including genes encoding hypothetical proteins. To identify the genes involved in inducing biofilm formation, the gene expression of bacteria during an early initial phase when biofilm starts to form after induction by bile or amino acid depletion was determined. Comparisons of the resulting gene expression profiles with the profiles of non-induced bacteria incubated for the same period of time showed a set of core genes associated with early biofilm formation. This set included genes involved in quorum sensing, pili biogenesis and genes indicative of a potential metabolic shift involving nitrogen utilisation. Genes encoding components of sugar phosphotransferase systems were also up-regulated during biofilm induction. Assays of biofilm formation by bacteria deleted of some of these core genes showed that strains lacking hpr and luxS , which are known to be important for functional sugar phosphotransferase systems and quorum sensing, as well as glnL encoding a sensory histidine kinase were most negatively affected. Most of the deletion mutant strains tested were affected, but the effect was less severe, suggesting high levels of redundancy in the pathways involved in biofilm formation by this pathogen.
1

Neural epidermal growth factor-like 1 protein variant increases survival and modulates the inflammatory and immune responses in human ACE-2 transgenic mice infected with SARS-CoV-2

Roopa Biswas et al.Feb 8, 2021
+3
D
S
R
ABSTRACT Coronavirus disease 2019 (COVID-19) is a viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is a worsening global pandemic. COVID-19 has caused at least 1.7 million deaths worldwide and over 300,000 in the United States. Recently, two promising vaccines are being administered in several countries. However, there remains an urgent need for a therapeutic treatment for COVID-19 patients with severe respiratory damage that can lead to intensive care, prolonged hospitalization, or mortality. Moreover, an increasing population of patients manifest lingering disabling symptoms (called Long Haulers). Here, we tested the efficacy of a recombinant neural epidermal growth factor like 1 protein variant (NELL1-NV1) in a COVID-19 mouse model, transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor (tg-mice hACE2) infected with SARS-CoV-2. The administration of NELL1-NV1 to SARS-CoV-2-infected tg-mice hACE2 significantly improved clinical health score and increased survival. Analyses of bronchoalveolar (BAL) fluid demonstrated decreased levels of several cytokines and chemokines (IFN-γ, IL-10, IL-12 p70, CXCL-10/IP-10, MIG and Rantes), in NV1-treated treated mice compared to controls. Cytokines including IL-1α, IL-9, IL-6, LIX/CXCL5, KC/CXCL1, MIP-2/CXCL2, MIP-1α/CCL3, and G-CSF, critical to immune responses such as neutrophil recruitment, viral clearance and vascularization, were increased compared to controls. Our data suggest the potential of NELL1-NV1-based therapy to mitigate the cytokine storm, modulate the abnormal immune response and repair respiratory tissue damage in COVID-19 patients.