DH
David Hong
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
2,673
h-index:
23
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology

Luca Piccoli et al.Sep 16, 2020
+47
A
C
L
Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
0

Molecular Basis of T Cell Inactivation by CTLA-4

Kyung Lee et al.Dec 18, 1998
+7
M
E
K
CTLA-4, a negative regulator of T cell function, was found to associate with the T cell receptor (TCR) complex ζ chain in primary T cells. The association of TCRζ with CTLA-4, reconstituted in 293 transfectants, was enhanced by p56 lck -induced tyrosine phosphorylation. Coexpression of the CTLA-4–associated tyrosine phosphatase, SHP-2, resulted in dephosphorylation of TCRζ bound to CTLA-4 and abolished the p56 lck -inducible TCRζ–CTLA-4 interaction. Thus, CTLA-4 inhibits TCR signal transduction by binding to TCRζ and inhibiting tyrosine phosphorylation after T cell activation. These findings have broad implications for the negative regulation of T cell function and T cell tolerance.
0

Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease

Timothy Blauwkamp et al.Feb 11, 2019
+20
M
S
T
Thousands of pathogens are known to infect humans, but only a fraction are readily identifiable using current diagnostic methods. Microbial cell-free DNA sequencing offers the potential to non-invasively identify a wide range of infections throughout the body, but the challenges of clinical-grade metagenomic testing must be addressed. Here we describe the analytical and clinical validation of a next-generation sequencing test that identifies and quantifies microbial cell-free DNA in plasma from 1,250 clinically relevant bacteria, DNA viruses, fungi and eukaryotic parasites. Test accuracy, precision, bias and robustness to a number of metagenomics-specific challenges were determined using a panel of 13 microorganisms that model key determinants of performance in 358 contrived plasma samples, as well as 2,625 infections simulated in silico and 580 clinical study samples. The test showed 93.7% agreement with blood culture in a cohort of 350 patients with a sepsis alert and identified an independently adjudicated cause of the sepsis alert more often than all of the microbiological testing combined (169 aetiological determinations versus 132). Among the 166 samples adjudicated to have no sepsis aetiology identified by any of the tested methods, sequencing identified microbial cell-free DNA in 62, likely derived from commensal organisms and incidental findings unrelated to the sepsis alert. Analysis of the first 2,000 patient samples tested in the CLIA laboratory showed that more than 85% of results were delivered the day after sample receipt, with 53.7% of reports identifying one or more microorganisms.
0
Citation621
0
Save
71

A human antibody that broadly neutralizes betacoronaviruses protects against SARS-CoV-2 by blocking the fusion machinery

Dora Pinto et al.May 10, 2021
+49
N
M
D
The repeated spillovers of β-coronaviruses in humans along with the rapid emergence of SARS-CoV-2 escape variants highlight the need to develop broad coronavirus therapeutics and vaccines. Five monoclonal antibodies (mAbs) were isolated from COVID-19 convalescent individuals and found to cross-react with multiple β-coronavirus spike (S) glycoproteins by targeting the stem helix. One of these mAbs, S2P6, cross-reacts with more than twenty human and animal β-coronavirus S glycoproteins and broadly neutralizes SARS-CoV-2 and pseudotyped viruses from the sarbecovirus, merbecovirus and embecovirus subgenera. Structural and functional studies delineate the molecular basis of S2P6 cross-reactivity and broad neutralization and indicate that this mAb blocks viral entry through inhibition of membrane fusion. S2P6 protects hamsters challenged with SARS-CoV-2 (including the B.1.351 variant of concern) through viral neutralization and Fc-mediated effector functions. Serological and B cell repertoire analyses indicate that antibodies targeting the stem helix are found in some convalescent donors and vaccinees but are predominantly of narrow specificity. Germline reversion of the identified cross-reactive mAbs revealed that their unmutated ancestors are specific for the endemic OC43 or HKU1 viruses and acquired enhanced affinity and breadth through somatic mutations. These data demonstrate that conserved epitopes in the coronavirus fusion machinery can be targeted by protective antibodies and provide a framework for structure-guided design of pan-β-coronavirus vaccines eliciting broad protection.
71
Citation15
0
Save
0

Liquid biopsy for infectious diseases: Sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease

David Hong et al.Jun 20, 2018
+3
M
T
D
Diagnosis of life-threatening deep-seated infections currently requires invasive sampling of the infected tissue to provide a microbiologic diagnosis. These procedures can lead to high morbidity in patients and add to healthcare costs. Here we describe a novel next-generation sequencing assay that was used to detect pathogen-derived cell-free DNA in peripheral blood of patients with biopsy-proven invasive fungal infections. The non-invasive nature of this approach could provide rapid, actionable treatment information for invasive fungal infections when a biopsy is not possible.