BG
Brian Glancy
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(82% Open Access)
Cited by:
431
h-index:
26
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mitochondrial reticulum for cellular energy distribution in muscle

Brian Glancy et al.Jul 1, 2015
+5
D
L
B
Mitochondria are shown to form a conductive pathway throughout the cell in the form of a proton motive force, and throughout this network, mitochondrial protein localization seems to be varied, allowing optimized generation and utilization of the mitochondrial membrane potential; the rapid energy distribution network, which depends on conduction rather than diffusion, could explain how the muscle can rapidly respond to energy demands. How is energy distributed within the cell? In the skeletal muscle, energy distribution has been proposed to occur through metabolite-facilitated diffusion, although genetic evidence has raised questions about the importance of this mode of distribution. Using various forms of high-resolution microscopy, Robert Balaban and colleagues explore whether the mitochondria themselves — as well as actually generating the energy — also have a role in its distribution. They find that they do, by forming a conductive pathway throughout the cell in the form of a proton-motive force. Throughout this network, the mitochondrial protein localization seems to be varied, allowing optimized generation and utilization of the mitochondrial membrane potential. This energy distribution network, which depends on conduction rather than diffusion, is potentially extremely rapid, thereby enabling muscle to respond almost instantaneously to new energy demands. Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion1,2; however, genetic evidence suggests that facilitated diffusion is not critical for normal function3,4,5,6,7. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.
1

A Universal Approach to Analyzing Transmission Electron Microscopy with ImageJ

Jacob Lam et al.May 29, 2021
+13
P
R
J
2 ABSTRACT Transmission electron microscopy (TEM) is a scientific research standard for producing nanometer-resolution ultrastructural images of subcellular components within cells and tissues. Mitochondria, endoplasmic reticulum (ER), lysosomes, and autophagosomes are organelles of particular interest to those investigating metabolic disorders. However, there is no clear consensus amongst regarding the best methods for quantifying the features of organelles in TEM images. In this protocol, we propose a standardized approach to accurately measure the morphology of these important subcellular structures using the free program ImageJ, developed by the National Institutes of Health (NIH). Specifically, we detail procedures for obtaining mitochondrial length, width, area, and circularity, in addition to assessing cristae morphology. We further provide methods for measuring interactions between the mitochondria and ER and measuring the length and width of lysosomes and autophagosomes. This standardized method can be used to quantify key features of organelle morphology, allowing investigators to produce accurate and reproducible measurements of organelle structures in their experimental samples. 1 SUMMARY We discuss a standardized method for measuring and quantifying organelle features using transmission electron microscopy and accessing for interactions between subcellular structures; organelles of focus include mitochondria, endoplasmic reticulum, lysosomes, and autophagosomes.
1
Citation15
0
Save
50

A comprehensive approach to artifact-free sample preparation and the assessment of mitochondrial morphology in tissue and cultured cells

Antentor Hinton et al.Jun 29, 2021
+27
L
E
A
Summary Mitochondrial dynamics (fission, fusion, and the formation of nanotunnels) and morphology are very sensitive to the cellular environment. Mitochondria may be adversely affected by oxidative stress, changes in calcium levels, and hypoxia. Investigating the precise relationship between organelle structure and function requires methods that can adequately preserve mitochondria while providing accurate, quantitative measurements of morphological attributes. Here, we demonstrate a practical approach for preserving and measuring fine structural changes using two-dimensional, high-resolution electron micrographs. This approach is further applicable for three-dimensional volume renderings, obtained using serial block-face and focused ion beam-scanning electron microscopy, highlighting the specific advantages of these techniques. Additionally, this study defines a set of quantifiable metrics that can be applied to measure mitochondrial architecture and other organellar structures. Finally, we validated specimen preparation methods that avoid the introduction of morphological artifacts that may interfere with mitochondrial appearance and do not require whole-animal perfusion.
50
Citation6
0
Save
53

Reorganization of the Mitochondria-Organelle Interactome during Postnatal Development in Skeletal Muscle

Yuho Kim et al.Jun 17, 2021
B
C
E
Y
Abstract Cellular development requires the integrated assembly of intracellular structures into functionally specialized regions supporting overall cellular performance. However, it remains unclear how coordination of organelle interactions contributes to development of functional specificity across cell types. Here, we utilize a subcellular connectomics approach to define the cell-scale reorganization of the mitochondria-organelle interactome across postnatal development in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets, and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. These data demonstrate a developmental redesign reflecting a functional shift from muscle cell assembly supported by inter-organelle communication toward a muscle fiber highly specialized for contractile function.
53
Citation5
0
Save
1

An Evolutionarily Conserved Regulatory Pathway of Muscle Mitochondrial Network Organization

Prasanna Katti et al.Oct 1, 2021
+2
A
P
P
Abstract Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial network-type separately from contractile fiber-type remain unclear. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated independently. Proteomic analyses of indirect flight, jump, and leg muscles together with muscles misexpressing known fiber-type specification factor salm identified transcription factors H15 and cut as potential mitochondrial network regulators. We demonstrate H15 operates downstream of salm regulating flight muscle contractile and mitochondrial network-type. Conversely, H15 regulates mitochondrial network configuration but not contractile type in jump and leg muscles. Further, we find that cut regulates salm expression in flight muscles and mitochondrial network configuration in leg muscles. These data indicate cell type-specific regulation of muscle mitochondrial network organization separately from contractile type, mitochondrial content, and mitochondrial size through an evolutionarily conserved pathway involving cut, salm , and H15 .
1
Citation4
0
Save
8

Systematic Transmission Electron Microscopy-Based Identification and 3D Reconstruction of Cellular Degradation Machinery

Kit Neikirk et al.Sep 27, 2021
+23
P
Z
K
Abstract Many interconnected degradation machineries including autophagosomes, lysosomes, and endosomes work in tandem to conduct autophagy, an intracellular degradation system that is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. Although many studies have investigated autophagy to elucidate disease pathogenesis, identification of specific components of the autophagy machinery has been challenging. The goal of this paper is to describe an approach to reproducibly identify and distinguish subcellular structures involved in macro autophagy. We provide methods that help avoid common pitfalls, including a detailed explanation for distinguishing lysosomes and lipid droplets and discuss differences between autophagosomes and inclusion bodies. These methods are based on using transmission electron microscopy (TEM), capable of generating nanometer-scale micrographs of cellular degradation components in a fixed sample. We also utilize serial block face-scanning electron microscopy (SBF-SEM) to offer a protocol for visualizing 3D morphology of degradation machinery. In addition to TEM and 3D reconstruction, we discuss other imaging techniques, such as immunofluorescence and immunogold labeling that can be utilized to reliably and accurately classify cellular organelles. Our results show how these methods may be used to accurately quantify the cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.
8
Citation4
0
Save
44

3D Reconstruction of Murine Mitochondria Exhibits Changes in Structure Across Aging Linked to the MICOS Complex

Zer Vue et al.Mar 23, 2022
+52
B
C
Z
ABSTRACT Background During aging, muscle gradually undergoes loss of function including sarcopenia, losing mass, strength, endurance, and oxidative capacity. While mitochondrial aging is associated with decreased mitochondrial capacity, the genes associated with morphological changes in mitochondria during aging still require further elucidation. Furthermore, it is not completely understood how 3D mitochondrial structures are altered during aging in skeletal muscle and cardiac tissues. Methods We measured changes in mitochondrial morphology and mitochondrial complexity during the aging of murine gastrocnemius, soleus, and cardiac tissues using serial block face- scanning electron microscopy and 3D reconstruction. Lipidomic and metabolomic analysis elucidated concomitant changes associated with aging. We also used qPCR, transmission electron microscopy quantification, Seahorse Analyzer, and metabolomics to evaluate changes in mitochondria morphology and function upon loss of the MICOS complex. Results We identified significant changes in 3D mitochondrial size and network configuration in murine gastrocnemius, soleus, and cardiac tissue during aging. These changes were concomitant with loss of mitochondria contact site and cristae organizing system (MICOS) gene expression during aging. Mitochondrial morphology was similar between aged mice and young mice. We show an age-related loss of the MICOS complex (Chchd3, chchd6, and Mitofilin) while their knockout results in alterations in mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we perform cellular metabolic profiling of young and aged tissues. Metabolomics and lipidomics showed profound alterations, including in membrane integrity, that support our observations of age-related changes in these muscle tissues. Discussion In tandem, our data suggest a relationship between the MICOS complex and aging, which could be linked to disease states with further 3D reconstruction studies. Our study highlights the importance of understanding tissue-dependent 3D mitochondrial phenotypical changes which occur across aging with evolutionary conservation between Drosophila and murine models. Graphical Abstract
44
Citation3
0
Save
26

ATF4 Dependent Increase in Mitochondrial-Endoplasmic Reticulum Tethering Following OPA1 Deletion in Skeletal Muscle

Antentor Hinton et al.Sep 15, 2022
+24
E
P
A
Summary Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca 2+ , lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila , and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.
26
Citation3
0
Save
25

Loss of TMEM65 causes mitochondrial disease mediated by mitochondrial calcium

Yingfan Zhang et al.Aug 4, 2022
+8
J
L
Y
Transmembrane protein 65 (TMEM65) depletion in a patient carrying a homozygous variant in the Tmem65 splice site resulted in severe mitochondrial encephalomyopathy, indicating the clinical importance of TMEM65. However, the function of TMEM65 remains unknown. Here, we generated a TMEM65 reporter mouse as well as whole-body and tissue-specific Tmem65 knockout (KO) mice to investigate the localization and function of TMEM65. We show that TMEM65 is localized to mitochondria in heart, skeletal muscle, and throughout the brain. Both whole-body and nervous system-specific Tmem65 KO result in severe growth retardation and sudden death following seizures ~3 weeks after birth, indicating TMEM65 is indispensable for normal brain function. In addition, we find that skeletal muscle-specific Tmem65 KO leads to progressive, adult-onset myopathy preceded by elevated mitochondrial calcium levels despite unaltered expression of known mitochondrial or cellular calcium handling proteins. Consistently, we demonstrate that ablation of TMEM65 results in a loss of sodium-dependent mitochondrial calcium export. Finally, we show that blocking mitochondrial calcium entry through removal of the mitochondrial calcium uniporter (MCU) rescues the early lethality of whole-body TMEM65 ablation. Our data not only reveal the essential role of TMEM65 in mammalian physiology, but also suggest modulating mitochondrial calcium may offer a potential therapeutical approach to address defects associated with TMEM65 misexpression.
25
Citation2
0
Save
1

Mitochondrial Network Configuration Influences Sarcomere and Myosin Filament Structure in Striated Muscles

Prasanna Katti et al.Jan 14, 2022
+5
P
A
P
Abstract Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to sarcoplasmic reticulum. Finally, we demonstrate smaller myosin filament lattice spacing at filament ends than filament centers in a cell type-dependent manner. These data suggest both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within muscle cells.
1
Citation1
0
Save
Load More