Mitochondria are shown to form a conductive pathway throughout the cell in the form of a proton motive force, and throughout this network, mitochondrial protein localization seems to be varied, allowing optimized generation and utilization of the mitochondrial membrane potential; the rapid energy distribution network, which depends on conduction rather than diffusion, could explain how the muscle can rapidly respond to energy demands. How is energy distributed within the cell? In the skeletal muscle, energy distribution has been proposed to occur through metabolite-facilitated diffusion, although genetic evidence has raised questions about the importance of this mode of distribution. Using various forms of high-resolution microscopy, Robert Balaban and colleagues explore whether the mitochondria themselves — as well as actually generating the energy — also have a role in its distribution. They find that they do, by forming a conductive pathway throughout the cell in the form of a proton-motive force. Throughout this network, the mitochondrial protein localization seems to be varied, allowing optimized generation and utilization of the mitochondrial membrane potential. This energy distribution network, which depends on conduction rather than diffusion, is potentially extremely rapid, thereby enabling muscle to respond almost instantaneously to new energy demands. Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion1,2; however, genetic evidence suggests that facilitated diffusion is not critical for normal function3,4,5,6,7. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.