AA
Alberto Amarilla
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(100% Open Access)
Cited by:
40
h-index:
29
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 By Disrupting The Spike-ACE2 interaction

Scott Guimond et al.Jun 24, 2020
Summary Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a co-receptor with the ACE2 protein for recognition of the S1 spike protein on SARS-CoV-2 virus, providing a tractable new target for therapeutic intervention. Clinically-used heparins demonstrate inhibitory activity, but world supplies are limited, necessitating alternative solutions. Synthetic HS mimetic pixatimod is a drug candidate for cancer with immunomodulatory and heparanase-inhibiting properties. Here we show that pixatimod binds to and destabilizes the SARS-CoV-2 spike protein receptor binding domain (S1-RBD), and directly inhibits its binding to human ACE2, consistent with molecular modelling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of live SARS-CoV-2 virus show that pixatimod potently inhibits infection of monkey Vero E6 and human bronchial epithelial cells at concentrations within its safe therapeutic dose range. Furthermore, in a K18-hACE2 mouse model pixatimod demonstrates that pixatimod markedly attenuates SARS-CoV-2 viral titer and COVID-19-like symptoms. This demonstration of potent anti-SARS-CoV-2 activity establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics. Together with other known activities of pixatimod our data provides a strong rationale for its clinical investigation as a potential multimodal therapeutic to address the COVID-19 pandemic.
19
Citation12
0
Save
43

SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike-ACE2 receptor interaction

Eduardo Albornoz et al.Jan 12, 2022
ABSTRACT Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson’s disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation utilising a model of human monocyte-derived microglia. We identified that SARS-CoV-2 isolates can bind and enter microglia, triggering inflammasome activation in the absence of viral replication. Mechanistically, microglial NLRP3 could be both primed and activated with SARS-CoV-2 spike glycoprotein in a NF-κB and ACE2-dependent manner. Notably, virus- and spike protein-mediated inflammasome activation in microglia was significantly enhanced in the presence of α-synuclein fibrils, which was entirely ablated by NLRP3-inhibition. These results support a possible mechanism of microglia activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson’s disease in certain COVID-19 infected individuals, and a potential therapeutic avenue for intervention. SIGNIFICANCE STATEMENT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) principally affects the lungs, however there is evidence that the virus can also reach the brain and lead to chronic neurological symptoms. In this study, we examined the interaction SARS-CoV-2 with brain immune cells, by using an ex-vivo model of human monocyte-derived microglia. We identified robust activation of the innate immune sensor complex, NLRP3 inflammasome, in cells exposed to SARS-CoV-2. This was dependent on spike protein-ACE2 receptor interaction and was potentiated in the presence of α-synuclein. We therefore identify a possible mechanism for SARS-CoV-2 and increased vulnerability to developing neurological dysfunction. These findings support a potential therapeutic avenue for treatment of SARS-CoV-2 driven neurological manifestations, through use of NLRP3 inflammasome or ACE2 inhibitors.
43
Citation8
0
Save
98

Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology

Julio Aguado et al.Jan 18, 2023
Abstract Aging is the primary risk factor for most neurodegenerative diseases, and recently coronavirus disease 2019 (COVID-19) has been associated with severe neurological manifestations that can eventually impact neurodegenerative conditions in the long-term. The progressive accumulation of senescent cells in vivo strongly contributes to brain aging and neurodegenerative co-morbidities but the impact of virus-induced senescence in the aetiology of neuropathologies is unknown. Here, we show that senescent cells accumulate in physiologically aged brain organoids of human origin and that senolytic treatment reduces inflammation and cellular senescence; for which we found that combined treatment with the senolytic drugs dasatinib and quercetin rejuvenates transcriptomic human brain aging clocks. We further interrogated brain frontal cortex regions in postmortem patients who succumbed to severe COVID-19 and observed increased accumulation of senescent cells as compared to age-matched control brains from non-COVID-affected individuals. Moreover, we show that exposure of human brain organoids to SARS-CoV-2 evoked cellular senescence, and that spatial transcriptomic sequencing of virus-induced senescent cells identified a unique SARS-CoV-2 variant-specific inflammatory signature that is different from endogenous naturally-emerging senescent cells. Importantly, following SARS-CoV-2 infection of human brain organoids, treatment with senolytics blocked viral retention and prevented the emergence of senescent corticothalamic and GABAergic neurons. Furthermore, we demonstrate in human ACE2 overexpressing mice that senolytic treatment ameliorates COVID-19 brain pathology following infection with SARS-CoV-2. In vivo treatment with senolytics improved SARS-CoV-2 clinical phenotype and survival, alleviated brain senescence and reactive astrogliosis, promoted survival of dopaminergic neurons, and reduced viral and senescence-associated secretory phenotype gene expression in the brain. Collectively, our findings demonstrate SARS-CoV-2 can trigger cellular senescence in the brain, and that senolytic therapy mitigates senescence-driven brain aging and multiple neuropathological sequelae caused by neurotropic viruses, including SARS-CoV-2.
98
Citation2
0
Save
14

Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis

Andrii Slonchak et al.May 19, 2021
Abstract Zika virus (ZIKV) is a re-emerging pathogenic flavivirus, which causes microcephaly in infants and poses a continuing threat to public health. ZIKV, like all other flaviviruses, produces highly abundant noncoding RNA known as subgenomic flaviviral RNA (sfRNA). Herein we utilized wild-type and mutant ZIKV defective in production of sfRNA to elucidate for the first time how production of sfRNA affects all aspects of ZIKV pathogenesis. We found that in mouse pregnancy model of infection sfRNA is required for trans-placental dissemination of ZIKV and subsequent infection of fetal brain. Using human brain organoids, we showed that sfRNA promotes apoptosis of neural progenitor cells leading to profound cytopathicity and disintegration of organoids. We also found by transcriptome profiling and gene network analysis that in infected human placental cells sfRNA inhibits multiple antiviral pathways and promotes apoptosis with STAT1 identified as a key shared factor linking these two interconnected sfRNA activities. We further showed for the first time that sfRNA inhibits phosphorylation and nuclear translocation of STAT1 by a novel mechanism which involves binding to and stabilizing viral protein NS5. This allows accumulation of NS5 at the levels required for efficient inhibition of STAT1 phosphorylation. Thus, we elucidated the molecular mechanism by which ZIKV sfRNA exerts its functions in vertebrate hosts and discovered a co-operation between viral noncoding RNA and a viral protein as a novel strategy employed by viruses to counteract antiviral responses.
14
Citation2
0
Save
176

Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity Nanobody

G Valenzuela et al.Jun 10, 2020
Abstract Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with therapeutic potential applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of high-affinity nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.
12

The role ofN-glycosylation in spike antigenicity for the SARS-CoV-2 Gamma variant

Cassandra Pegg et al.Apr 7, 2023
Abstract The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N -glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N -glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody binding. Glycan site-occupancy analyses revealed that the mutation resulted in N -glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.
12
0
Save
47

An alpaca-derived nanobody recognizes a unique conserved epitope and retains potent activity against the SARS-CoV-2 omicron variant

Naphak Modhiran et al.Dec 27, 2022
Abstract The SARS-CoV2 Omicron variant sub-lineages spread rapidly through the world, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for anti-SARS-CoV-2 agents that are effective against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production and potential for delivery via inhalation. Here, we characterize the RBD-specific nanobody W25, which we previously isolated from an alpaca, and show superior neutralization activity towards Omicron lineage BA.1 in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike surface glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. Furthermore, we show that W25 also binds the spike protein from the emerging, more infectious Omicron BA.2 lineage with picomolar affinity. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse prioritization of W25 for further clinical development.
47
0
Save
Load More