IC
Ildefonso Cases
Author with expertise in Molecular Mechanisms of Cardiac Development and Regeneration
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
32
h-index:
27
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
87

The little skate genome and the evolutionary emergence of wing-like fin appendages

Ferdinand Marlétaz et al.Mar 22, 2022
Skates are cartilaginous fish whose novel body plan features remarkably enlarged wing-like pectoral fins that allow them to thrive in benthic environments. The molecular underpinnings of this unique trait, however, remain elusive. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins (gene expression, chromatin occupancy and three-dimensional (3D) conformation) we find skate-specific genomic rearrangements that alter the 3D regulatory landscape of genes involved in the planar cell polarity (PCP) pathway. Functional inhibition of PCP signaling resulted in marked reduction of anterior fin size, confirming this pathway as a major contributor of batoid fin morphology. We also identified a fin-specific enhancer that interacts with 3' HOX genes, consistent with the redeployment of Hox gene expression in anterior pectoral fins, and confirmed the potential of this element to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganizations and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
87
Citation8
0
Save
5

Human prefoldin modulates co-transcriptional pre-mRNA splicing

Laura Payán-Bravo et al.Jun 15, 2020
ABSTRACT Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the co-translational folding of actin and tubulin monomers. Additional functions of prefoldin have been described, including a positive contribution to transcription elongation and chromatin dynamics in yeast. Here we show that prefoldin perturbations provoked transcriptional alterations across the human genome. Severe pre-mRNA splicing defects were also detected, particularly after serum stimulation. We found impairment of co-transcriptional splicing during transcription elongation, which explains why the induction of long genes with a high number of introns was affected the most. We detected genome-wide prefoldin binding to transcribed genes and found that it correlated with the negative impact of prefoldin depletion on gene expression. Lack of prefoldin caused global decrease in Ser2 and Ser5 phosphorylation of the RNA polymerase II carboxy-terminal domain. It also reduced the recruitment of the CTD kinase CDK9 to transcribed genes, and the association of splicing factors PRP19 and U2AF65 to chromatin, which is known to depend on CTD phosphorylation. Altogether the reported results indicate that human prefoldin is able to act locally on the genome to modulate gene expression by influencing phosphorylation of elongating RNA polymerase II, and thereby regulating co-transcriptional splicing.
5
Citation2
0
Save
0
21

Expanded FLP toolbox for spatiotemporal protein degradation and transcriptomic profiling in C. elegans

Adrián Fragoso-Luna et al.Dec 22, 2021
Abstract Control of gene expression in specific tissues and/or at certain stages of development allows the study and manipulation of gene function with high precision. Site-specific genome recombination by the Flippase (FLP) and Cre enzymes has proven particularly relevant. Joint efforts of many research groups have led to the creation of efficient FLP and Cre drivers to regulate gene expression in a variety of tissues in Caenorhabditis elegans . Here, we extend this toolkit by the addition of FLP lines that drive recombination specifically in distal tip cells, the somatic gonad, coelomocytes and the epithelial P lineage. In some cases, recombination-mediated gene knockouts do not completely deplete protein levels due to persistence of long-lived proteins. To overcome this, we developed a spatiotemporally regulated degradation system for GFP fusion proteins (GFPdeg) based on FLP-mediated recombination. Using two stable nuclear pore proteins, MEL-28/ELYS and NPP-2/NUP85 as examples, we report the benefit of combining tissue-specific gene knockout and protein degradation to achieve complete protein depletion. We also demonstrate that FLP-mediated recombination can be utilized to identify transcriptomes in a C. elegans tissue of interest. We have adapted RNA polymerase DamID (RAPID) for the FLP toolbox and by focusing on a well-characterized tissue, the hypodermis, we show that the vast majority of genes identified by RAPID are known to be expressed in this tissue. These tools allow combining FLP activity for simultaneous gene inactivation and transcriptomic profiling, thus enabling the inquiry of gene function in various complex biological processes.