BG
Brianna Gurdon
Author with expertise in Role of Microglia in Neurological Disorders
Jackson Laboratory, University of Maine
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

Detecting the effect of genetic diversity on brain composition in an Alzheimer’s disease mouse model

Brianna Gurdon et al.Oct 24, 2023
+16
G
S
B
Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and progressive cognitive decline. There is significant variation in age at onset and severity of symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of brain atlas-registration, and quality control assessment of atlas-registration and brain section integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta accumulation were measured, while regional variation in neuron load existed among strains. Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-sequencing results to demonstrate the relationship between cell composition and gene expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective method for registering and quantifying cell and pathology changes in diverse disease models.
27

Conserved cell-type specific signature of resilience to Alzheimer’s disease nominates role for excitatory intratelencephalic cortical neurons

Maria Telpoukhovskaia et al.Oct 24, 2023
+20
B
N
M
Summary Alzheimer’s disease (AD), the leading cause of dementia, affects millions of people worldwide. With no disease-modifying medication currently available, the human toll and economic costs are rising rapidly. Under current standards, a patient is diagnosed with AD when both cognitive decline and pathology (amyloid plaques and neurofibrillary tangles) are present. Remarkably, some individuals who have AD pathology remain cognitively normal. Uncovering factors that lead to “cognitive resilience” to AD is a promising path to create new targets for therapies. However, technical challenges discovering novel human resilience factors limit testing, validation, and nomination of novel drugs for AD. In this study, we use single-nucleus transcriptional profiles of postmortem cortex from human individuals with high AD pathology who were either cognitively normal (resilient) or cognitively impaired (susceptible) at time of death, as well as mouse strains that parallel these differences in cognition with high amyloid load. Our cross-species discovery approach highlights a novel role for excitatory layer 4/5 cortical neurons in promoting cognitive resilience to AD, and nominates several resilience genes that include ATP1A1 , GRIA3 , KCNMA1 , and STXBP1 . This putative cell type has been implicated in resilience in previous studies on bulk RNA-seq tissue, but our single-nucleus and cross-species approach identifies particular resilience-associated gene signatures in these cells. These novel resilience candidate genes were tested for replication in orthogonal data sets and confirmed to be correlated with cognitive resilience. Based on these gene signatures, we identified several potential mechanisms of resilience, including regulation of synaptic plasticity, axonal and dendritic development, and neurite vesicle transport along microtubules that are potentially targetable by available therapeutics. Because our discovery of resilience-associated genes in layer 4/5 cortical neurons originates from an integrated human and mouse transcriptomic space from susceptible and resilient individuals, we are positioned to test causality and perform mechanistic, validation, and pre-clinical studies in our human-relevant AD-BXD mouse panel.