KG
Kris Gevaert
Author with expertise in Mass Spectrometry Techniques with Proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
54
(69% Open Access)
Cited by:
6,964
h-index:
97
/
i10-index:
366
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PRIDE: The proteomics identifications database

Lennart Martens et al.Jul 22, 2005
The advent of high-throughput proteomics has enabled the identification of ever increasing numbers of proteins. Correspondingly, the number of publications centered on these protein identifications has increased dramatically. With the first results of the HUPO Plasma Proteome Project being analyzed and many other large-scale proteomics projects about to disseminate their data, this trend is not likely to flatten out any time soon. However, the publication mechanism of these identified proteins has lagged behind in technical terms. Often very long lists of identifications are either published directly with the article, resulting in both a voluminous and rather tedious read, or are included on the publisher's website as supplementary information. In either case, these lists are typically only provided as portable document format documents with a custom-made layout, making it practically impossible for computer programs to interpret them, let alone efficiently query them. Here we propose the proteomics identifications (PRIDE) database (http://www.ebi.ac.uk/pride) as a means to finally turn publicly available data into publicly accessible data. PRIDE offers a web-based query interface, a user-friendly data upload facility, and a documented application programming interface for direct computational access. The complete PRIDE database, source code, data, and support tools are freely available for web access or download and local installation.
0

Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans

Thomas Arnesen et al.May 7, 2009
N α -terminal acetylation is one of the most common protein modifications in eukaryotes. The COmbined FRActional DIagonal Chromatography (COFRADIC) proteomics technology that can be specifically used to isolate N-terminal peptides was used to determine the N-terminal acetylation status of 742 human and 379 yeast protein N termini, representing the largest eukaryotic dataset of N-terminal acetylation. The major N-terminal acetyltransferase (NAT), NatA, acts on subclasses of proteins with Ser-, Ala-, Thr-, Gly-, Cys- and Val- N termini. NatA is composed of subunits encoded by y ARD1 and y NAT1 in yeast and h ARD1 and h NAT1 in humans. A yeast ard1 -Δ nat1 -Δ strain was phenotypically complemented by h ARD1 h NAT1 , suggesting that yNatA and hNatA are similar. However, heterologous combinations, h ARD1 y NAT1 and y ARD1 h NAT1 , were not functional in yeast, suggesting significant structural subunit differences between the species. Proteomics of a yeast ard1 -Δ nat1 -Δ strain expressing hNatA demonstrated that hNatA acts on nearly the same set of yeast proteins as yNatA, further revealing that NatA from humans and yeast have identical or nearly identical specificities. Nevertheless, all NatA substrates in yeast were only partially N-acetylated, whereas the corresponding NatA substrates in HeLa cells were mainly completely N-acetylated. Overall, we observed a higher proportion of N-terminally acetylated proteins in humans (84%) as compared with yeast (57%). N-acetylation occurred on approximately one-half of the human proteins with Met-Lys- termini, but did not occur on yeast proteins with such termini. Thus, although we revealed different N-acetylation patterns in yeast and humans, the major NAT, NatA, acetylates the same substrates in both species.
0
Citation503
0
Save
0

LNCipedia: a database for annotated human lncRNA transcript sequences and structures

Pieter‐Jan Volders et al.Oct 5, 2012
Here, we present LNCipedia (http://www.lncipedia.org), a novel database for human long non-coding RNA (lncRNA) transcripts and genes. LncRNAs constitute a large and diverse class of non-coding RNA genes. Although several lncRNAs have been functionally annotated, the majority remains to be characterized. Different high-throughput methods to identify new lncRNAs (including RNA sequencing and annotation of chromatin-state maps) have been applied in various studies resulting in multiple unrelated lncRNA data sets. LNCipedia offers 21 488 annotated human lncRNA transcripts obtained from different sources. In addition to basic transcript information and gene structure, several statistics are determined for each entry in the database, such as secondary structure information, protein coding potential and microRNA binding sites. Our analyses suggest that, much like microRNAs, many lncRNAs have a significant secondary structure, in-line with their presumed association with proteins or protein complexes. Available literature on specific lncRNAs is linked, and users or authors can submit articles through a web interface. Protein coding potential is assessed by two different prediction algorithms: Coding Potential Calculator and HMMER. In addition, a novel strategy has been integrated for detecting potentially coding lncRNAs by automatically re-analysing the large body of publicly available mass spectrometry data in the PRIDE database. LNCipedia is publicly available and allows users to query and download lncRNA sequences and structures based on different search criteria. The database may serve as a resource to initiate small- and large-scale lncRNA studies. As an example, the LNCipedia content was used to develop a custom microarray for expression profiling of all available lncRNAs.
0
Citation478
0
Save
0

Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex

Sonja Krugmann et al.Oct 1, 2001
The Rho GTPases Rho, Rac, and Cdc42 regulate the organization of the actin cytoskeleton by interacting with multiple, distinct downstream effector proteins. Cdc42 controls the formation of actin bundle-containing filopodia at the cellular periphery. The molecular mechanism for this remains as yet unclear.We report here that Cdc42 interacts with IRSp53/BAP2 alpha, an SH3 domain-containing scaffold protein, at a partial CRIB motif and that an N-terminal fragment of IRSp53 binds, via an intramolecular interaction, to the CRIB motif-containing central region. Overexpression of IRSp53 in fibroblasts leads to the formation of filopodia, and both this and Cdc42-induced filopodia are inhibited by expression of the N-terminal IRSp53 fragment. Using affinity chromatography, we have identified Mena, an Ena/VASP family member, as interacting with the SH3 domain of IRSp53. Mena and IRSp53 act synergistically to promote filopodia formation.We conclude that the interaction of Cdc42 with the partial CRIB motif of IRSp53 relieves an intramolecular, autoinhibitory interaction with the N terminus, allowing the recruitment of Mena to the IRSp53 SH3 domain. This IRSp53:Mena complex initiates actin filament assembly into filopodia.
0

Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera

Philip Meuleman et al.Mar 24, 2005
A small animal model harboring a functional human liver cell xenograft would be a useful tool to study human liver cell biology, drug metabolism, and infections with hepatotropic viruses. Here we describe the repopulation, organization, and function of human hepatocytes in a mouse recipient and the infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) of the transplanted cells. Homozygous urokinase plasminogen activator (uPA)-SCID mice underwent transplantation with primary human hepatocytes, and at different times animals were bled and sacrificed to analyze plasma and liver tissue, respectively. The plasma of mice that were successfully transplanted contained albumin and an additional 21 human proteins. Liver histology showed progressive and massive replacement of diseased mouse tissue by human hepatocytes. These cells were accumulating glycogen but appeared otherwise normal and showed no signs of damage or death. They formed functional bile canaliculi that connected to mouse canaliculi. Besides mature hepatocytes, human hepatic progenitor cells that were differentiating into mature hepatocytes could be identified within liver parenchyma. Infection of chimeric mice with HBV or HCV resulted in an active infection that did not alter the liver function and architecture. Electron microscopy showed the presence of viral and subviral structures in HBV infected hepatocytes. In conclusion, human hepatocytes repopulate the uPA+/+-SCID mouse liver in a very organized fashion with preservation of normal cell function. The presence of human hepatic progenitor cells in these chimeric animals necessitates a critical review of the observations and conclusions made in experiments with isolated “mature” hepatocytes. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY 2005;41:847–856.)
0

Targeted Peptidecentric Proteomics Reveals Caspase-7 as a Substrate of the Caspase-1 Inflammasomes

Mohamed Lamkanfi et al.Jul 31, 2008
The aspartate-specific cysteine protease caspase-1 is activated by the inflammasomes and is responsible for the proteolytic maturation of the cytokines IL-1β and IL-18 during infection and inflammation. To discover new caspase-1 substrates, we made use of a proteome-wide gel-free differential peptide sorting methodology that allows unambiguous localization of the processing site in addition to identification of the substrate. Of the 1022 proteins that were identified, 20 were found to be specifically cleaved after Asp in the setup incubated with recombinant caspase-1. Interestingly, caspase-7 emerged as one of the identified caspase-1 substrates. Moreover half of the other identified cleavage events occurred at sites closely resembling the consensus caspase-7 recognition sequence DEVD, suggesting caspase-1-mediated activation of endogenous caspase-7 in this setup. Consistently recombinant caspase-1 cleaved caspase-7 at the canonical activation sites Asp23 and Asp198, and recombinant caspase-7 processed a subset of the identified substrates. In vivo, caspase-7 activation was observed in conditions known to induce activation of caspase-1, including Salmonella infection and microbial stimuli combined with ATP. Interestingly Salmonella- and lipopolysaccharide + ATP-induced activation of caspase-7 was abolished in macrophages deficient in caspase-1, the pattern recognition receptors Ipaf and Cryopyrin, and the inflammasome adaptor ASC, demonstrating an upstream role for the caspase-1 inflammasomes in caspase-7 activation in vivo. In contrast, caspase-1 and the inflammasomes were not required for caspase-3 activation. In conclusion, we identified 20 new substrates activated downstream of caspase-1 and validated caspase-1-mediated caspase-7 activation in vitro and in knock-out macrophages. These results demonstrate for the first time the existence of a nucleotide binding and oligomerization domain-like receptor/caspase-1/caspase-7 cascade and the existence of distinct activation mechanisms for caspase-3 and -7 in response to microbial stimuli and bacterial infection.
Load More