JT
Jason Town
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
19
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

WAVE complex self-organization templates lamellipodial formation

Anne Pipathsouk et al.Nov 9, 2019
ABSTRACT How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. For example, why does the WAVE complex build lamellipodia, the broad sheet-like protrusions that power cell migration, whereas the homologous actin regulator N-WASP forms spiky finger-like actin networks? N-WASP is known to oligomerize into focal condensates that generate an actin finger. In contrast, the WAVE complex exhibits the linear distribution needed to generate an actin sheet. This linear organization of the WAVE complex could either arise from interactions with the actin cytoskeleton or could represent an ability of the complex to self-organize into a linear template. Using super-resolution microscopy, we find that the WAVE complex forms higher-order linear oligomers that curve into 270 nanometer-wide ring structures in the absence of actin polymer. These rings localize to the necks of membrane invaginations, which display saddle point geometries with positive curvature in one axis and negative curvature in the orthogonal axis. To investigate the molecular mechanism of saddle curvature enrichment, we show that the WAVE complex and IRSp53, a membrane curvature-sensitive protein, collaborate to recognize saddle curvature that IRSp53 cannot sense alone. This saddle preference for the WAVE complex could explain emergent cell behaviors, such as expanding and self-straightening lamellipodia as well as the ability of endothelial cells to recognize and seal transcellular holes. Our work highlights how partnering protein interactions enable complex shape sensing and how feedback between cell shape and actin regulators yields self-organized cell morphogenesis.
0
Citation9
0
Save
0

A Toolkit for Rapid Modular Construction of Biological Circuits in Mammalian Cells

João Fonseca et al.Dec 26, 2018
Abstract The ability to rapidly assemble and prototype cellular circuits is vital for biological research and its applications in biotechnology and medicine. Current methods that permit the assembly of DNA circuits in mammalian cells are laborious, slow, expensive and mostly not permissive of rapid prototyping of constructs. Here we present the Mammalian ToolKit (MTK), a Golden Gate-based cloning toolkit for fast, reproducible and versatile assembly of large DNA vectors and their implementation in mammalian models. The MTK consists of a curated library of characterized, modular parts that can be easily mixed and matched to combinatorially assemble one transcriptional unit with different characteristics, or a hierarchy of transcriptional units weaved into complex circuits. MTK renders many cell engineering operations facile, as showcased by our ability to use the toolkit to generate single-integration landing pads, to create and deliver libraries of protein variants and sgRNAs, and to iterate through Cas9-based prototype circuits. As a biological proof of concept, we used the MTK to successfully design and rapidly construct in mammalian cells a challenging multicistronic circuit encoding the Ebola virus (EBOV) replication complex. This construct provides a non-infectious biosafety level 2 (BSL2) cellular assay for exploring the transcription and replication steps of the EBOV viral life cycle in its host. Its construction also demonstrates how the MTK can enable important and time sensitive applications such as the rapid testing of pharmacological inhibitors of emerging BSL4 viruses that pose a major threat to human health.
0
Citation1
0
Save