KK
Knut Kolskår
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
3
h-index:
11
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Bridging Big Data: Procedures for Combining Non-equivalent Cognitive Measures from the ENIGMA Consortium

Eamonn Kennedy et al.Jan 19, 2023
+141
C
M
E
Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.
0

Functional brain network modeling in sub-acute stroke patients and healthy controls during rest and continuous attentive tracking

Erlend Dørum et al.May 21, 2019
+8
D
T
E
A cerebral stroke is characterized by compromised brain function due to an interruption in cerebrovascular blood supply. Although stroke incurs focal damage determined by the vascular territory affected, clinical symptoms commonly involve multiple functions and cognitive faculties that are insufficiently explained by the focal damage alone. Functional connectivity (FC) refers to the synchronous activity between spatially remote brain regions organized in a network of interconnected brain regions. Functional magnetic resonance imaging (fMRI) has advanced this system-level understanding of brain function, elucidating the complexity of stroke outcomes, as well as providing information useful for prognostic and rehabilitation purposes.We tested for differences in brain network connectivity between a group of patients with minor ischemic strokes in sub-acute phase (n=44) and matched controls (n=100). As neural network configuration is dependent on cognitive effort, we obtained fMRI data during rest and two load levels of a multiple object tacking (MOT) task. Network nodes and time-series were estimated using independent component analysis (ICA) and dual regression, with network edges defined as the partial temporal correlations between node pairs. The full set of edgewise FC went into a cross-validated regularized linear discriminant analysis (rLDA) to classify groups and cognitive load.MOT task performance and cognitive tests revealed no significant group differences. While multivariate machine learning revealed high sensitivity to experimental condition, with classification accuracies between rest and attentive tracking approaching 100%, group classification was at chance level, with negligible differences between conditions. Repeated measures ANOVA showed significantly stronger synchronization between a temporal node and a sensorimotor node in patients across conditions. Overall, the results revealed high sensitivity of FC indices to task conditions, and suggest relatively small brain network-level disturbances after clinically mild strokes.
0

Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry

Geneviève Richard et al.May 2, 2018
+10
O
K
G
Multimodal imaging enables sensitive measures of the architecture and integrity of the human brain, but the high-dimensional nature of advanced brain imaging features poses inherent challenges for the analyses and interpretations. Multivariate age prediction reduces the dimensionality to one biologically informative summary measure with potential for assessing deviations from normal lifespan trajectories. A number of studies documented remarkably accurate age prediction, but the differential age trajectories and the cognitive sensitivity of distinct brain tissue classes have to a lesser extent been characterized. Exploring differential brain age models driven by tissue-specific classifiers provides a hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain biology. We trained machine-learning models to estimate brain age using various combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of white matter microstructure in 612 healthy controls aged 18-87 years. To compare the tissue-specific brain ages and their cognitive sensitivity we applied each of the 11 models in an independent and cognitively well-characterized sample (n=265, 20-88 years). Correlations between true and estimated age in our test sample were highest for the most comprehensive brain morphometry (r=0.83, CI:0.78-0.86) and white matter microstructure (r=0.79, CI:0.74-0.83) models, confirming sensitivity and generalizability. The deviance from the chronological age were sensitive to performance on several cognitive tests for various models, including spatial Stroop and symbol coding, indicating poorer performance in individuals with an over-estimated age. Tissue-specific brain age models provide sensitive measures of brain integrity, with implications for the study of a range of brain disorders.
0

Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study

Siren Tønnesen et al.Apr 12, 2019
+33
A
T
S
Background: Schizophrenia (SZ) and bipolar disorders (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, BD, and healthy controls across 10 cohorts. Methods: We trained six cross-validated models using different combinations of DTI data from 927 healthy controls (HC, 18-94 years), and applied the models to the test sets including 648 SZ (18-66 years) patients, 185 BD patients (18-64 years), and 990 HC (17-68 years), estimating brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. Results: 10-fold cross-validation revealed high accuracy for all models. Compared to controls, the model including all feature sets significantly over-estimated the age of patients with SZ (d=-.29) and BD (d=.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy (FA) based models showed larger group differences than the models based on other DTI-derived metrics. Conclusions: Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.### Competing Interest StatementHugdahl owns shares in NordicNeuroLab, Inc, which produced add-on hardware for acquisition of data at the Bergen site.
0

Reliable longitudinal brain age prediction in stroke patients: Associations with cognitive function and response to cognitive training

Geneviève Richard et al.Jun 29, 2019
+9
K
K
G
Cognitive deficits are important predictors for outcome, independence and quality of life after stroke, but often remain unnoticed and unattended because other impairments are more evident. Computerized cognitive training (CCT) is among the candidate interventions that may alleviate cognitive difficulties, but the evidence supporting its feasibility and effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring. Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and outcome prediction. By integrating information not only about lesion extent and localization, but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides relevant information for developing better prediction models in order to tailor cognitive intervention for patients, especially in a chronic phase.Using brain age prediction based on MRI based brain morphometry and machine learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative to their chronological age perform better on cognitive tests and benefit more from cognitive training compared to patients with an older-appearing brain. In this randomized double-blind study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS<7 at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In addition, patients were randomized to one of two groups receiving either active or sham transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap (estimated age – chronological age) on cognitive performance, and associations between brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age gap during the intervention were sensitive to treatment response. Briefly, our results suggest that longitudinal brain age prediction based on automated brain morphometry is feasible and reliable in stroke patients. However, no significant association between brain age and both performance and response to cognitive training were found.
4

Brain disconnectivity mapping of post-stroke fatigue

Kristine Ulrichsen et al.Nov 15, 2020
+10
G
K
K
Abstract Stroke patients commonly suffer from post stroke fatigue (PSF). Despite a general consensus that brain perturbations constitute a precipitating event in the multifactorial etiology of PSF, the specific predictive value of conventional lesion characteristics such as size and localization remain unclear. The current study represents a novel approach to assess the neural correlates of PSF in chronic stroke patients. While previous research has focused primarily on lesion location or size, with mixed or inconclusive results, we targeted the extended structural network implicated by the lesion, and evaluated the added explanatory value of a disconnectivity approach with regards to the brain correlates of PSF. To this end, we estimated individual brain disconnectome maps in 84 stroke survivors in the chronic phase (≥ 3 months post stroke) using information about lesion location and normative white matter pathways obtained from 170 healthy individuals. PSF was measured by the Fatigue Severity Scale (FSS). Voxel wise analyses using non-parametric permutation-based inference were conducted on disconnectome maps to estimate regional effects of disconnectivity. Associations between PSF and global disconnectivity and clinical lesion characteristics were tested by linear models, and we estimated Bayes factor to quantify the evidence for the null and alternative hypotheses, respectively. The results revealed no significant associations between PSF and disconnectome measures or lesion characteristics, with moderate evidence in favor of the null hypothesis. These results suggest that symptoms of post-stroke fatigue are not simply explained by lesion characteristics or brain disconnectome measures in stroke patients in a chronic phase, and are discussed in light of methodological considerations.
0

Genetics of brain age suggest an overlap with common brain disorders

Tobias Kaufmann et al.Apr 17, 2018
+83
A
S
T
Numerous genetic and environmental factors contribute to psychiatric disorders and other brain disorders. Common risk factors likely converge on biological pathways regulating the optimization of brain structure and function across the lifespan. Here, using structural magnetic resonance imaging and machine learning, we estimated the gap between brain age and chronological age in 36,891 individuals aged 3 to 96 years, including individuals with different brain disorders. We show that several disorders are associated with accentuated brain aging, with strongest effects in schizophrenia, multiple sclerosis and dementia, and document differential regional patterns of brain age gaps between disorders. In 16,269 healthy adult individuals, we show that brain age gap is heritable with a polygenic architecture overlapping those observed in common brain disorders. Our results identify brain age gap as a genetically modulated trait that offers a window into shared and distinct mechanisms in different brain disorders.
0

Longitudinal stability of the brain functional connectome is associated with episodic memory performance in aging

Olga Ousdal et al.Apr 11, 2019
+5
A
K
O
The brain functional connectome forms a relatively stable and idiosyncratic backbone that can be used for identification or fingerprinting of individuals with a high level of accuracy. While previous cross-sectional evidence has demonstrated increased stability and distinctiveness of the brain connectome during the course of childhood and adolescence, less is known regarding the longitudinal stability in middle and old age. Here we collected structural and resting state functional MRI data at two time-points separated by 2-3 years in 75 middle-aged and older adults (age 49-80, SD = 6.91 years) which allowed us to assess the long-term stability of the functional connectome. We show that the connectome backbone generally remains stable over a 2-3 year time frame in middle- and old age. Independent of age, cortical volume was associated with the connectome stability of several canonical resting-state networks, suggesting that the connectome backbone relates to the structural integrity of the cortex. Moreover, individual longitudinal stability of subcortical and default mode networks were associated with differences in cross-sectional and longitudinal measures of episodic memory performance, supporting the functional relevance. The findings encourage the use of connectome stability analyses for understanding individual differences in cognitive aging. Furthermore, the observation that age-related changes in episodic memory performance relates to the stability of subcortical and default mode networks, provides new longitudinal evidence for the importance of these networks in maintaining mnemonic processing in old age.