GM
Glen Munson
Author with expertise in Regulation of RNA Processing and Function
Broad Institute, Foundation Center, Novo Nordisk Foundation
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
21
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Genome-wide maps of enhancer regulation connect risk variants to disease genes

Joseph Nasser et al.Oct 24, 2023
+27
C
D
J
Abstract Genome-wide association studies have now identified tens of thousands of noncoding loci associated with human diseases and complex traits, each of which could reveal insights into biological mechanisms of disease. Many of the underlying causal variants are thought to affect enhancers, but we have lacked genome-wide maps of enhancer-gene regulation to interpret such variants. We previously developed the Activity-by-Contact (ABC) Model to predict enhancer-gene connections and demonstrated that it can accurately predict the results of CRISPR perturbations across several cell types. Here, we apply this ABC Model to create enhancer-gene maps in 131 cell types and tissues, and use these maps to interpret the functions of fine-mapped GWAS variants. For inflammatory bowel disease (IBD), causal variants are >20-fold enriched in enhancers in particular cell types, and ABC outperforms other regulatory methods at connecting noncoding variants to target genes. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes via variants in enhancers that act in different cell types. Guided by these variant-to-function maps, we show that an enhancer containing an IBD risk variant regulates the expression of PPIF to tune mitochondrial membrane potential. Together, our study reveals insights into principles of genome regulation, illuminates mechanisms that influence IBD, and demonstrates a generalizable strategy to connect common disease risk variants to their molecular and cellular functions.
1
Citation10
0
Save
101

Mapping the convergence of genes for coronary artery disease onto endothelial cell programs

Gavin Schnitzler et al.Oct 24, 2023
+21
V
H
G
Abstract Genome-wide association studies (GWAS) have discovered thousands of risk loci for common, complex diseases, each of which could point to genes and gene programs that influence disease. For some diseases, it has been observed that GWAS signals converge on a smaller number of biological programs, and that this convergence can help to identify causal genes 1–6 . However, identifying such convergence remains challenging: each GWAS locus can have many candidate genes, each gene might act in one or more possible programs, and it remains unclear which programs might influence disease risk. Here, we developed a new approach to address this challenge, by creating unbiased maps to link disease variants to genes to programs (V2G2P) in a given cell type. We applied this approach to study the role of endothelial cells in the genetics of coronary artery disease (CAD). To link variants to genes, we constructed enhancer-gene maps using the Activity-by-Contact model 7,8 . To link genes to programs, we applied CRISPRi-Perturb-seq 9–12 to knock down all expressed genes within ±500 Kb of 306 CAD GWAS signals 13,14 and identify their effects on gene expression programs using single-cell RNA-sequencing. By combining these variant-to-gene and gene-to-program maps, we find that 43 of 306 CAD GWAS signals converge onto 5 gene programs linked to the cerebral cavernous malformations (CCM) pathway—which is known to coordinate transcriptional responses in endothelial cells 15 , but has not been previously linked to CAD risk. The strongest regulator of these programs is TLNRD1 , which we show is a new CAD gene and novel regulator of the CCM pathway. TLNRD1 loss-of-function alters actin organization and barrier function in endothelial cells in vitro , and heart development in zebrafish in vivo . Together, our study identifies convergence of CAD risk loci into prioritized gene programs in endothelial cells, nominates new genes of potential therapeutic relevance for CAD, and demonstrates a generalizable strategy to connect disease variants to functions.
0

Rewriting regulatory DNA to dissect and reprogram gene expression

Gabriella Martyn et al.Dec 21, 2023
+13
H
M
G
Regulatory DNA sequences within enhancers and promoters bind transcription factors to encode cell type-specific patterns of gene expression. However, the regulatory effects and programmability of such DNA sequences remain difficult to map or predict because we have lacked scalable methods to precisely edit regulatory DNA and quantify the effects in an endogenous genomic context. Here we present an approach to measure the quantitative effects of hundreds of designed DNA sequence variants on gene expression, by combining pooled CRISPR prime editing with RNA fluorescence in situ hybridization and cell sorting (Variant-FlowFISH). We apply this method to mutagenize and rewrite regulatory DNA sequences in an enhancer and the promoter of PPIF in two immune cell lines. Of 672 variant-cell type pairs, we identify 497 that affect PPIF expression. These variants appear to act through a variety of mechanisms including disruption or optimization of existing transcription factor binding sites, as well as creation of de novo sites. Disrupting a single endogenous transcription factor binding site often led to large changes in expression (up to -40% in the enhancer, and -50% in the promoter). The same variant often had different effects across cell types and states, demonstrating a highly tunable regulatory landscape. We use these data to benchmark performance of sequence-based predictive models of gene regulation, and find that certain types of variants are not accurately predicted by existing models. Finally, we computationally design 185 small sequence variants (≤10 bp) and optimize them for specific effects on expression in silico. 84% of these rationally designed edits showed the intended direction of effect, and some had dramatic effects on expression (-100% to +202%). Variant-FlowFISH thus provides a powerful tool to map the effects of variants and transcription factor binding sites on gene expression, test and improve computational models of gene regulation, and reprogram regulatory DNA.
0
Citation2
0
Save
0

Convergence of coronary artery disease genes onto endothelial cell programs

Gavin Schnitzler et al.Mar 5, 2024
+24
S
H
G
0

Activity-by-Contact model of enhancer specificity from thousands of CRISPR perturbations

Charles Fulco et al.May 6, 2020
+15
T
J
C
Mammalian genomes harbor millions of noncoding elements called enhancers that quantitatively regulate gene expression, but it remains unclear which enhancers regulate which genes. Here we describe an experimental approach, based on CRISPR interference, RNA FISH, and flow cytometry (CRISPRi-FlowFISH), to perturb enhancers in the genome, and apply it to test >3,000 potential regulatory enhancer-gene connections across multiple genomic loci. A simple equation based on a mechanistic model for enhancer function performed remarkably well at predicting the complex patterns of regulatory connections we observe in our CRISPR dataset. This Activity-by-Contact (ABC) model involves multiplying measures of enhancer activity and enhancer-promoter 3D contacts, and can predict enhancer-gene connections in a given cell type based on chromatin state maps. Together, CRISPRi-FlowFISH and the ABC model provide a systematic approach to map and predict which enhancers regulate which genes, and will help to interpret the functions of the thousands of disease risk variants in the noncoding genome.
0

Neighborhood regulation by lncRNA promoters, transcription, and splicing

Jesse Engreitz et al.May 6, 2020
+6
G
J
J
Mammalian genomes are pervasively transcribed to produce thousands of spliced long noncoding RNAs (lncRNAs), whose functions remain poorly understood. Because recent evidence has implicated several specific lncRNA loci in the local regulation of gene expression, we sought to determine whether such local regulation is a property of many lncRNA loci. We used genetic manipulations to dissect 12 genomic loci that produce lncRNAs and found that 5 of these loci influence the expression of a neighboring gene in cis. Surprisingly, however, none of these effects required the specific lncRNA transcripts themselves and instead involved general processes associated with their production, including enhancer-like activity of gene promoters, the process of transcription, and the splicing of the transcript. Interestingly, such effects are not limited to lncRNA loci: we found similar effects on local gene expression at 4 of 6 protein-coding loci. These results demonstrate that 'crosstalk' among neighboring genes is a prevalent phenomenon that can involve multiple mechanisms and cis regulatory signals, including a novel role for RNA splicing. These mechanisms may explain the function and evolution of some genomic loci that produce lncRNAs.