IC
Ilaria Chillotti
Author with expertise in Advanced Cryptographic Schemes and Protocols
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
490
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

TFHE: Fast Fully Homomorphic Encryption Over the Torus

Ilaria Chillotti et al.Apr 25, 2019
This work describes a fast fully homomorphic encryption scheme over the torus (TFHE) that revisits, generalizes and improves the fully homomorphic encryption (FHE) based on GSW and its ring variants. The simplest FHE schemes consist in bootstrapped binary gates. In this gate bootstrapping mode, we show that the scheme FHEW of Ducas and Micciancio (Eurocrypt, 2015) can be expressed only in terms of external product between a GSW and an LWE ciphertext. As a consequence of this result and of other optimizations, we decrease the running time of their bootstrapping from 690 to 13 ms single core, using 16 MB bootstrapping key instead of 1 GB, and preserving the security parameter. In leveled homomorphic mode, we propose two methods to manipulate packed data, in order to decrease the ciphertext expansion and to optimize the evaluation of lookup tables and arbitrary functions in $${\mathrm {RingGSW}}$$-based homomorphic schemes. We also extend the automata logic, introduced in Gama et al. (Eurocrypt, 2016), to the efficient leveled evaluation of weighted automata, and present a new homomorphic counter called $$\mathrm {TBSR}$$, that supports all the elementary operations that occur in a multiplication. These improvements speed up the evaluation of most arithmetic functions in a packed leveled mode, with a noise overhead that remains additive. We finally present a new circuit bootstrapping that converts $$\mathsf {LWE}$$ ciphertexts into low-noise $${\mathrm {RingGSW}}$$ ciphertexts in just 137 ms, which makes the leveled mode of TFHE composable and which is fast enough to speed up arithmetic functions, compared to the gate bootstrapping approach. Finally, we provide an alternative practical analysis of LWE based schemes, which directly relates the security parameter to the error rate of LWE and the entropy of the LWE secret key, and we propose concrete parameter sets and timing comparison for all our constructions.
22

Ultra-Fast Homomorphic Encryption Models enable Secure Outsourcing of Genotype Imputation

Miran Kim et al.Jul 4, 2020
ABSTRACT Genotype imputation is a fundamental step in genomic data analysis such as GWAS, where missing variant genotypes are predicted using the existing genotypes of nearby ‘tag’ variants. Imputation greatly decreases the genotyping cost and provides high-quality estimates of common variant genotypes. As population panels increase, e.g., the TOPMED Project, genotype imputation is becoming more accurate, but it requires high computational power. Although researchers can outsource genotype imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service. To address this problem, we developed the first fully secure genotype imputation by utilizing ultra-fast homomorphic encryption (HE) techniques that can evaluate millions of imputation models in seconds. In HE-based methods, the genotype data is end-to-end encrypted, i.e., encrypted in transit, at rest, and, most importantly, in analysis, and can be decrypted only by the data owner. We compared secure imputation with three other state-of-the-art non-secure methods under different settings. We found that HE-based methods provide full genetic data security with comparable or slightly lower accuracy. In addition, HE-based methods have time and memory requirements that are comparable and even lower than the non-secure methods. We provide five different implementations and workflows that make use of three cutting-edge HE schemes (BFV, CKKS, TFHE) developed by the top contestants of the iDASH19 Genome Privacy Challenge. Our results provide strong evidence that HE-based methods can practically perform resource-intensive computations for high throughput genetic data analysis. In addition, the publicly available codebases provide a reference for the development of secure genomic data analysis methods.
22
Citation17
0
Save