JT
Juan Troncoso-Pastoriza
Author with expertise in Privacy-Preserving Techniques for Data Analysis and Machine Learning
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
290
h-index:
23
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Efficient Bootstrapping for Approximate Homomorphic Encryption with Non-sparse Keys

Jean-Philippe Bossuat et al.Jan 1, 2021
We present a bootstrapping procedure for the full-RNS variant of the approximate homomorphic-encryption scheme of Cheon et al., CKKS (Asiacrypt 17, SAC 18). Compared to the previously proposed procedures (Eurocrypt 18 & 19, CT-RSA 20), our bootstrapping procedure is more precise, more efficient (in terms of CPU cost and number of consumed levels), and is more reliable and 128-bit-secure. Unlike the previous approaches, it does not require the use of sparse secret-keys. Therefore, to the best of our knowledge, this is the first procedure that enables a highly efficient and precise bootstrapping with a low probability of failure for parameters that are 128-bit-secure under the most recent attacks on sparse R-LWE secrets. We achieve this efficiency and precision by introducing three novel contributions: (i) We propose a generic algorithm for homomorphic polynomial-evaluation that takes into account the approximate rescaling and is optimal in level consumption. (ii) We optimize the key-switch procedure and propose a new technique for linear transformations (double hoisting). (iii) We propose a systematic approach to parameterize the bootstrapping, including a precise way to assess its failure probability. We implemented our improvements and bootstrapping procedure in the open-source Lattigo library. For example, bootstrapping a plaintext in $$\mathbb {C}^{32768}$$ takes 18 s, has an output coefficient modulus of 505 bits, a mean precision of 19.1 bits, and a failure probability of $$2^{-15.58}$$ . Hence, we achieve 14.1 $$\times $$ improvement in bootstrapped throughput (plaintext-bit per second), with respect to the previous best results, and we have a failure probability 468 $$\times $$ smaller and ensure 128-bit security.
22

Ultra-Fast Homomorphic Encryption Models enable Secure Outsourcing of Genotype Imputation

Miran Kim et al.Jul 4, 2020
ABSTRACT Genotype imputation is a fundamental step in genomic data analysis such as GWAS, where missing variant genotypes are predicted using the existing genotypes of nearby ‘tag’ variants. Imputation greatly decreases the genotyping cost and provides high-quality estimates of common variant genotypes. As population panels increase, e.g., the TOPMED Project, genotype imputation is becoming more accurate, but it requires high computational power. Although researchers can outsource genotype imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service. To address this problem, we developed the first fully secure genotype imputation by utilizing ultra-fast homomorphic encryption (HE) techniques that can evaluate millions of imputation models in seconds. In HE-based methods, the genotype data is end-to-end encrypted, i.e., encrypted in transit, at rest, and, most importantly, in analysis, and can be decrypted only by the data owner. We compared secure imputation with three other state-of-the-art non-secure methods under different settings. We found that HE-based methods provide full genetic data security with comparable or slightly lower accuracy. In addition, HE-based methods have time and memory requirements that are comparable and even lower than the non-secure methods. We provide five different implementations and workflows that make use of three cutting-edge HE schemes (BFV, CKKS, TFHE) developed by the top contestants of the iDASH19 Genome Privacy Challenge. Our results provide strong evidence that HE-based methods can practically perform resource-intensive computations for high throughput genetic data analysis. In addition, the publicly available codebases provide a reference for the development of secure genomic data analysis methods.
22
Citation17
0
Save
14

Truly Privacy-Preserving Federated Analytics for Precision Medicine with Multiparty Homomorphic Encryption

David Froelicher et al.Feb 25, 2021
ABSTRACT Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. Centralizing those data for a study is often infeasible due to privacy and security concerns. Federated analytics is rapidly emerging as a solution for enabling joint analyses of distributed medical data across a group of institutions, without sharing patient-level data. However, existing approaches either provide only limited protection of patients’ privacy by requiring the institutions to share intermediate results, which can in turn leak sensitive patient-level information, or they sacrifice the accuracy of results by adding noise to the data to mitigate potential leakage. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific collaborations.
1

Secure and Federated Genome-Wide Association Studies for Biobank-Scale Datasets

Hyunghoon Cho et al.Dec 2, 2022
ABSTRACT Sharing data across multiple institutions for genome-wide association studies (GWAS) would enable discovery of novel genetic variants linked to health and disease. However, existing regulations on genomic data sharing and the sheer size of the data limit the scope of such collaborations. Although cryptographic tools for secure computation promise to enable collaborative studies with formal privacy guarantees, existing approaches either are computationally impractical or support only simplified analysis pipelines. Here, we introduce secure and federated genome-wide association studies (SF-GWAS), a novel combination of secure computation frameworks that empowers efficient and accurate GWAS in a federated manner, i.e., on private data locally-held by multiple entities, while provably ensuring end-to-end data confidentiality. Another key advance is that we designed SF-GWAS to support the two most widely-used GWAS pipelines—those based on principal component analysis (PCA) or linear mixed models (LMMs). We ran SF-GWAS on five real GWAS datasets, including a large UK Biobank cohort of 410K individuals, thereby demonstrating the largest secure genetics collaboration to date. SF-GWAS achieves an order-of-magnitude runtime improvement over the prior art for PCA-based GWAS and newly allows secure LMM-based association tests, for which its runtime scales at a near-constant rate in cohort size. Our work realizes the power of secure, collaborative, and accurate GWAS at unprecedented scale and should be applicable to a broad range of analyses. Our open-source software is at: https://github.com/hhcho/sfgwas .
1
Citation3
0
Save
1

Privacy-Preserving Federated Neural Network Learning for Disease-Associated Cell Classification

Sinem Sav et al.Jan 11, 2022
ABSTRACT Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data-silos. Sharing or centralizing the data of different healthcare institutions is, however, unfeasible or prohibitively difficult due to privacy regulations. In this work, we address this problem by using a novel privacy-preserving federated learning-based approach, PriCell , for complex machine learning models such as convolutional neural networks. PriCell relies on multiparty homomorphic encryption and enables the collaborative training of encrypted neural networks with multiple healthcare institutions. We preserve the confidentiality of each institutions’ input data, of any intermediate values, and of the trained model parameters. We efficiently replicate the training of a published state-of-the-art convolutional neural network architecture in a decentralized and privacy-preserving manner. Our solution achieves an accuracy comparable to the one obtained with the centralized solution, with an improvement of at least one-order-of-magnitude in execution time with respect to prior secure solutions. Our work guarantees patient privacy and ensures data utility for efficient multi-center studies involving complex healthcare data.