SK
Simone Köhler
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
22
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dynamic molecular architecture of the synaptonemal complex

Simone Köhler et al.Feb 16, 2020
Abstract During meiosis, pairing between homologous chromosomes is stabilized by the assembly of a protein lattice known as the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and also regulates their distribution. However, how the SC regulates crossover formation remains elusive. We isolated an unusual mutation in C. elegans that disrupts crossover interference but not the assembly of the SC. This mutation alters the unique C-terminal domain of an essential SC protein, SYP-4, a likely ortholog of the vertebrate SC protein SIX6OS1. To characterize the structure of the SC in wild-type and mutant animals, we use three-dimensional STochastic Optical Reconstruction Microscopy (3D-STORM) to interrogate the molecular architecture of the SC in intact germline tissue from C. elegans . The approach enabled us to define positions of protein epitopes with respect to the 3D architecture of this complex. Using a probabilistic mapping approach to analyze super-resolution image data, we detect a marked structural transition in wild-type animals that coincides with crossover designation. We also found that our syp-4 mutant subtly perturbs SC architecture. Our findings add to growing evidence that the SC is an active material whose molecular organization contributes to chromosome-wide crossover regulation.
0
Citation14
0
Save
22

Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens

Fan Yang et al.Nov 14, 2022
Brillouin microscopy is an emerging optical elastography technique capable of assessing mechanical properties of biological samples in a 3D, all-optical and hence non-contact fashion. The typically weak Brillouin scattering signal can be substantially enhanced via a stimulated photon-phonon process, which improves the signal-to-background ratio (SBR) as well as provides higher spectral resolution. However, current implementations of stimulated Brillouin spectroscopy (SBS) require high pump powers, which prohibit applications in many areas of biology, especially when studying photosensitive samples, or when live-imaging in 3D and/or over extended time periods. Here, we present a pulsed SBS scheme that takes full advantage of the non-linearity of the pump-probe interaction in SBS. In particular, we show that through quasi-pulsing and diligent optimization of signal detection parameters, the required pump laser power can be decreased ~20-fold without affecting the signal levels or spectral precision. Moreover, we devise a custom analysis approach that facilitates the analysis of complex, multi-peaked Brillouin spectra in order to harness the high spectral resolution of SBS for the specific identification of biomechanical components inside the point-spread function of the microscope. We then demonstrate the low-phototoxicity and high-specificity of our pulsed SBS approach by imaging sensitive single cells, zebrafish larvae, and mouse embryos as well as adult C. elegans with sub-cellular detail. Furthermore, our method permits observing the mechanics of organoids and C. elegans embryos over time. We expect that the substantially lower photo-burden and improved SBR of pulsed SBS will facilitate studying biomechanics in 3D at high spatio-temporal resolution in living biological specimens in a non-invasive manner, opening up exciting new possibilities for the field of mechanobiology.
22
Citation4
0
Save
41

Quantitative Cytogenetics Reveals Molecular Stoichiometry and Longitudinal Organization of Meiotic Chromosome Axes and Loops

Alexander Woglar et al.Aug 5, 2019
ABSTRACT During meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using C. elegans . Analyses of WT chromosomes and de novo circular mini-chromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with two functionally-distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging three per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister chromatid loops. Indeed, immuno-FISH assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.
41
Citation4
0
Save
0

Super-resolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact C. elegans tissue

Simone Köhler et al.Feb 28, 2017
Abstract When cells enter meiosis, their chromosomes reorganize as linear arrays of chromatin loops anchored to a central axis. Meiotic chromosome axes form a platform for the assembly of the synaptonemal complex (SC), and play central roles in other meiotic processes, including homologous pairing, recombination, and chromosome segregation. However, little is known about the three-dimensional organization of components within the axes, which consist of cohesin complexes and additional meiosis-specific proteins. Here we investigate the molecular organization of meiotic chromosome axes in C. elegans through STORM and PALM superresolution imaging of intact germline tissue. By tagging one axis protein (HIM-3) with a photoconvertible fluorescent protein, we established a spatial reference for other components, which were localized using antibodies against epitope tags inserted by CRISPR/Cas9 genome editing. Using three-dimensional averaging, we determined the 3D-organization of all known components within synapsed chromosome axes to a precision of 2-5 nanometers. We find that meiosis-specific HORMA-domain proteins span a gap between cohesin complexes and the central region of the SC, consistent with their essential roles in SC assembly. Our data further suggest that the two different meiotic cohesin complexes are distinctly arranged within the axes: Cohesin complexes containing COH-3 or -4 kleisins form a central core in the central plane of the axes, whereas complexes containing REC-8 kleisin protrude above and below the plane defined by the SC. This splayed organization may help to explain the role of the chromosome axes in promoting inter-homolog repair of meiotic double strand breaks by inhibiting inter-sister repair.
0

Spherical harmonics texture extraction for versatile analysis of biological objects

Oane Gros et al.Jul 25, 2024
Abstract The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data. Here, we present Spherical Texture extraction, which measures the variance in intensity per angular wavelength by calculating the Spherical Harmonics or Fourier power spectrum of a spherical or circular projection of the angular mean intensity of the object. This method provides a 20-value characterization that quantifies the scale of features in the spherical projection of the intensity distribution, giving a different signal if the intensity is, for example, clustered in parts of the volume or spread across the entire volume. We apply this method to different systems and demonstrate its ability to describe various biological problems through feature extraction. The Spherical Texture extraction characterizes biologically defined gene expression patterns in Drosophila melanogaster embryos, giving a quantitative read-out for pattern formation. Our method can also quantify morphological differences in Caenorhabditis elegans germline nuclei, which lack a predefined pattern. We show that the classification of germline nuclei using their Spherical Texture outperforms a convolutional neural net when training data is limited. Additionally, we use a similar pipeline on 2D cell migration data to extract polarization direction, quantifying the alignment of fluorescent markers to the migration direction. We implemented the Spherical Texture method as a plugin in ilastik , making it easy to install and apply to any segmented 3D or 2D dataset. Additionally, this technique can also easily be applied through a Python package to provide extra feature extraction for any object classification pipeline or downstream analysis. Author summary We introduce a novel method to extract quantitative data from microscopy images by precisely measuring the distribution of intensities within objects in both 3D or 2D. This method is easily accessible through the object classification workflow of ilastik , provided the original image is segmented into separate objects. The method is specifically designed to analyze mostly convex objects, focusing on the variation in fluorescence intensity caused by differences in their shapes or patterns. We demonstrate the versatility of our method by applying it to very different biological samples. Specifically, we showcase its effectiveness in quantifying the patterning in D. melanogaster embryos, in classifying the nuclei in C. elegans germlines, and in extracting polarization information from individual migratory cells. Through these examples, we illustrate that our technique can be employed across different biological scales. Furthermore, we highlight the multiple ways in which the data generated by our method can be used, including quantifying the strength of a specific pattern, employing machine learning to classify diverse morphologies, or extracting directionality or polarization from fluorescence intensity.
0

Crossovers are regulated by a conserved and disordered synaptonemal complex domain

Ana Neves et al.Aug 5, 2024
To ensure the accurate segregation of homologous chromosomes and enhance the genetic diversity in the progeny, meiosis depends on the formation of crossovers between homologous chromosomes. The number and distribution of these crossovers must be precisely regulated through crossover assurance and interference to prevent chromosome missegregation and genomic instability. Here we show that the regulation of crossovers depends on a disordered domain within the synaptonemal complex, which is highly conserved. This domain is located at the C-terminus of the central element protein SYP-4 in C. elegans. While not necessary for synapsis, the C-terminus of SYP-4 is crucial for both crossover assurance and interference. Although the SYP-4 C-terminus contains many potential phosphorylation sites, we found that phosphorylation is not the primary regulator of crossover events. Instead, we discovered that nine conserved phenylalanines recruit a pro-crossover factor predicted to be an E3 ligase and regulate the physical properties of the synaptonemal complex. We propose that this conserved and disordered domain plays a crucial role in maintaining the synaptonemal complex in an activated state to promote crossing-over. This activation allows the synaptonemal complex to regulate the number and distribution of crossovers along chromosomes, thereby protecting the genome for future generations.