Miloslav Šanda
Author with expertise in Glycosylation in Health and Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
232
h-index:
31
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

N- and O-Glycosylation of the SARS-CoV-2 Spike Protein

Miloslav Šanda et al.Jan 7, 2021
Covid-19 pandemic outbreak is the reason of the current world health crisis. The development of effective antiviral compounds and vaccines requires detailed descriptive studies of SARS-CoV-2 proteins. The SARS-CoV-2 spike (S) protein mediates virion binding to the human cells through its interaction with the ACE2 cell surface receptor and is one of the prime immunization targets. A functional virion is composed of three S1 and three S2 subunits created by furin cleavage of the spike protein at R682, a polybasic cleavage site that differs from the SARS-CoV spike protein of 2002. By analysis of the protein produced in HEK293 cells, we observe that the spike is O-glycosylated on a threonine (T678) near the furin cleavage site occupied by core-1 and core-2 structures. In addition, we have identified eight additional O-glycopeptides on the spike glycoprotein and confirmed that the spike protein is heavily N-glycosylated. Our recently developed liquid chromatography–mass spectrometry methodology allowed us to identify LacdiNAc structural motifs on all occupied N-glycopeptides and polyLacNAc structures on six glycopeptides of the spike protein. In conclusion, our study substantially expands the current knowledge of the spike protein's glycosylation and enables the investigation of the influence of O-glycosylation on its proteolytic activation.
1
Paper
Citation193
0
Save
23

N and O glycosylation of the SARS-CoV-2 spike protein

Miloslav Šanda et al.Jul 6, 2020
Covid-19 pandemic outbreak is the reason of the current world health crisis. The development of effective antiviral compounds and vaccines requires detailed descriptive studies of the SARS-CoV-2 proteins. The SARS-CoV-2 spike (S) protein mediates virion binding to the human cells through its interaction with the ACE2 cell surface receptor and is one of the prime immunization targets. A functional virion is composed of three S1 and three S2 subunits created by furin cleavage of the spike protein at R682, a polybasic cleavage sites that differs from the SARS-CoV spike protein of 2002. We observe that the spike protein is O-glycosylated on a threonine (T678) near the furin cleavage site occupied by core-1 and core-2 structures. In addition, we have identified eight additional O-glycopeptides on the spike glycoprotein and we confirmed that the spike protein is heavily N-glycosylated. Our recently developed LC-MS/MS methodology allowed us to identify LacdiNAc structural motifs on all occupied N-glycopeptides and polyLacNAc structures on six glycopeptides of the spike protein. In conclusion, our study substantially expands the current knowledge of the spike proteins glycosylation and enables the investigation of the influence of the O-glycosylation on its proteolytic activation.
23
Citation28
0
Save
44

Community Evaluation of Glycoproteomics Informatics Solutions Reveals High-Performance Search Strategies of SerumN- andO-Glycopeptide Data

Rebeca Kawahara et al.Mar 15, 2021
Abstract Glycoproteome profiling (glycoproteomics) is a powerful yet analytically challenging research tool. The complex tandem mass spectra generated from glycopeptide mixtures require sophisticated analysis pipelines for structural determination. Diverse software aiding the process have appeared, but their relative performance remains untested. Conducted through the HUPO Human Proteome Project – Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates the performance of informatics solutions for system-wide glycopeptide analysis. Mass spectrometry-based glycoproteomics datasets from human serum were shared with all teams. The relative team performance for N - and O -glycopeptide data analysis was comprehensively established and validated through orthogonal performance tests. Excitingly, several high-performance glycoproteomics informatics solutions were identified. While the study illustrated that significant informatics challenges remain, as indicated by a high discordance between annotated glycopeptides, lists of high-confidence (consensus) glycopeptides were compiled from the standardised team reports. Deep analysis of the performance data revealed key performance-associated search variables and led to recommendations for improved “high coverage” and “high accuracy” glycoproteomics search strategies. This study concludes that diverse software for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies, and specifies key variables that may guide future software developments and assist informatics decision-making in glycoproteomics.
44
Citation9
0
Save
3

LC-MS/MS-PRM Quantification of IgG glycoforms using stable isotope labeled IgG1 Fc glycopeptide standard

Miloslav Šanda et al.Aug 2, 2022
Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this paper, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft collision induced dissociation (CID) conditions which reduces the CVs of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intra-scan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow as well as the CID workflow with the highest sensitivity compared to traditional workflows., This was exemplified by a rapid quantification (13-minute) of IgG1 Fc glycoforms from COVID-19 patients.
3
Citation1
0
Save
3

Analysis of site and structure specific core fucosylation in liver disease progression using exoglycosidase-assisted data-independent LC-MS/MS

Miloslav Šanda et al.Jul 30, 2020
ABSTRACT Carbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.
3
Citation1
0
Save
0

PD-L1 glycosylation and its impact on binding to clinical antibodies

Július Benický et al.Jul 4, 2020
Abstract Immune checkpoint inhibitors, including PD-L1/PD-1, are key regulators of immune response and promising targets in cancer immunotherapy. N-glycosylation of PD-L1 affects its interaction with PD-1 but little is known about the distribution of glycoforms at its four NXS/T sequons. We optimized LC-MS/MS methods using collision energy modulation for the site-specific resolution of specific glycan motifs. Using these methods, we demonstrate that PD-L1 expressed on the surface of breast cancer cells carries mostly complex glycans with high proportion of polyLacNAc structures at the N219 sequon. PD-L1 from whole cell lysate contained, in addition, large proportion of high mannose glycans at all sites. Contrary to the full-length protein, the secreted form of PD-L1 expressed in breast cancer or HEK293 cells demonstrated minimum N219 occupancy and low contribution of the polyLacNAc structures. Molecular modeling of PD-L1/PD-1 interaction with N-glycans suggests that glycans at the N219 site of PD-L1 and N74 and N116 of PD-1 are involved in glycan-glycan interactions, but the impact of this potential interaction on the protein function remains at this point unknown. In addition, the interaction of PD-L1 with clinical antibodies is also affected by glycosylation. In conclusion, our study demonstrates that PD-L1 expressed in the MDA-MB-231 breast cancer cells carries polyLacNAc glycans mostly at the N219 sequon which displays the highest variability in occupancy and is most likely to directly influence the interaction with PD-1.
1

“Ghost” fragment ions in structure and site-specific glycoproteomics analysis

Diana Campos et al.May 17, 2023
ABSTRACT Mass spectrometry (MS) can unlock crucial insights into the intricate world of glycosylation analysis. Despite its immense potential, the qualitative and quantitative analysis of isobaric glycopeptide structures remains one of the most daunting hurdles in the field of glycoproteomics. The ability to distinguish between these complex glycan structures poses a significant challenge, hindering our ability to accurately measure and understand the role of glycoproteins in biological systems. A few recent publications described the use of collision energy (CE) modulation to improve structural elucidation, especially for qualitative purposes. Different linkages of glycan units usually demonstrate different stabilities under CID/HCD fragmentation conditions. Fragmentation of the glycan moiety produces low molecular weight ions (oxonium ions) that can serve as a structure-specific signature for specific glycan moieties, however, specificity of these fragments has never been examined closely. Here, we investigated fragmentation specificity using synthetic stable isotope-labelled glycopeptide standards. These standards were isotopically labelled at the reducing terminal GlcNAc, which allowed us to resolve fragments produced by oligomannose core moiety and fragments generated from outer antennary structures. Our research identified the potential for false positive structure assignments due to the occurrence of “Ghost” fragments resulting from single glyco unit rearrangement or mannose core fragmentation within the collision cell. To mitigate this issue, we have established a minimal intensity threshold for these fragments to prevent the misidentification of structure-specific fragments in glycoproteomics analysis. Our findings provide a crucial step forward in the quest for more accurate and reliable glycoproteomics measurements. Graphical abstract
0

Single molecule real time (SMRT) full length RNA-sequencing reveals novel and distinct mRNA isoforms in human bone marrow cell subpopulations

Anne Mays et al.Feb 19, 2019
Hematopoietic cells are continuously replenished from progenitor cells that reside in the bone marrow. To evaluate molecular changes during this process, we analyzed the transcriptomes of freshly harvested human bone marrow progenitor (lineage-negative) and differentiated (lineage-positive) cells by single molecule, real time (SMRT) full length RNA sequencing. This analysis revealed a ~5-fold higher number of transcript isoforms than previously detected and showed a distinct composition of individual transcript isoforms characteristic for bone marrow subpopulations. A detailed analysis of mRNA isoforms transcribed from the ANXA1 and EEF1A1 loci confirmed their distinct composition. The expression of proteins predicted from the transcriptome analysis was validated by mass spectrometry and validated previously unknown protein isoforms predicted e.g. for EEF1A1. These protein isoforms distinguished the lineage negative cell population from the lineage positive cell population. Finally, transcript isoforms expressed from paralogous gene loci (e.g. CFD, GATA2, HLA-A, B & C) also distinguished cell subpopulations but were only detectable by full length RNA sequencing. Thus, qualitatively distinct transcript isoforms from individual genomic loci separate bone marrow cell subpopulations indicating complex transcriptional regulation and protein isoform generation during hematopoiesis.