GC
Guoliang Chai
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
269
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Somatic mosaicism in the mature brain reveals clonal cellular distributions during cortical development

Martin Breuss et al.Aug 10, 2020
Abstract The structure of the human neocortex underlies species-specific features and is a reflection of intricate developmental programs. Here we analyzed neocortical cellular lineages through a comprehensive assessment of brain somatic mosaicism—which acts as a neutral recorder of lineage history. We employed deep whole genome and variant sequencing in a single postmortem neurotypical human brain across 25 anatomic regions and three distinct modalities: bulk geographies, sorted cell types, and single nuclei. We identified 259 mosaic variants, revealing remarkable differences in localization, clonal abundance, cell type specificity, and clade distribution. We identified a set of hierarchical cellular diffusion barriers, whereby the left-right axis separation of the neocortex occurs prior to anterior-posterior and dorsal-ventral axis separation. We also found that stochastic distribution is a driver of clonal dispersion, and that rules regarding cellular lineages and anatomical boundaries are often ignored. Our data provides a comprehensive analysis of brain somatic mosaicism across the human cerebral cortex, deconvolving clonal distributions and migration patterns in the human embryo. One Sentence Summary Comprehensive evaluation of brain somatic mosaicism in the adult human identifies rules governing cellular distribution during embryogenesis.
16
Citation14
0
Save
15

Temporal stability of human sperm mosaic mutations results in life-long threat of transmission to offspring

Xiaoxu Yang et al.Oct 14, 2020
Summary Every newborn harbors scores of new single nucleotide variants (SNVs) that may impact health and disease 1–4 ; the majority of these are contributed by the paternal germ cells 5 . In some cases, these mutations are identifiable in a subset of the parents’ cells—a phenomenon called mosaicism, which is capable of producing disease recurrence 6–8 . Here, we provide a comprehensive analysis of male gonadal mosaic mutations, employing 300× whole genome sequencing (WGS) of blood and sperm in 17 healthy individuals, including assessment across multiple samples and age groups. Approximately 1 in 15 healthy males is predicted to harbor a transmissible, likely pathogenic exonic variant that is mosaic in his sperm. In general, only a third of sperm mosaic mutations were detectable in blood cells, all were remarkably stable over the course of months to years, and 23% were present in 5% or more of sperm cells. There was no evidence of age-dependent clonal expansion or collapse, as seen in hematopoiesis. Thus, despite the observed increase of mutations in offspring of men with advanced paternal age, detectable sperm mosaicism remains stable, represents a life-long transmission risk to offspring, and suggests a testis stem cell niche that prevents widespread clonality.
15
Citation2
0
Save
0

Translatome analysis in acute ischemic stroke: Astrocytes and microglia exhibit differences in poststroke alternative splicing of expressed transcripts

Beibei Jin et al.Aug 3, 2024
Abstract Astrocytes and microglia undergo dynamic and complex morphological and functional changes following ischemic stroke, which are instrumental in both inflammatory responses and neural repair. While gene expression alterations poststroke have been extensively studied, investigations into posttranscriptional regulatory mechanisms, specifically alternative splicing (AS), remain limited. Utilizing previously reported Ribo‐Tag‐seq data, this study analyzed AS alterations in poststroke astrocytes and microglia from young adult male and female mice. Our findings reveal that in astrocytes, compared to the sham group, 109 differential alternative splicing (DAS) events were observed at 4 h poststroke, which increased to 320 at day 3. In microglia, these numbers were 316 and 266, respectively. Interestingly, the disparity between DAS genes and differentially expressed genes is substantial, with fewer than 10 genes shared at both poststroke time points in astrocytes and microglia. Gene ontology enrichment analysis revealed the involvement of these DAS genes in diverse functions, encompassing immune response ( Adam8 , Ccr1 ), metabolism ( Acsl6 , Pcyt2, Myo5a ), and developmental cell growth ( App ), among others. Selective DAS events were further validated by semiquantitative RT‐PCR. Overall, this study comprehensively describes the AS alterations in astrocytes and microglia during the hyperacute and acute phases of ischemic stroke and underscores the significance of certain hub DAS events in neuroinflammatory processes.