MS
Marcello Stanzione
Author with expertise in Molecular Mechanisms of DNA Damage Response
TU Dresden, Massachusetts General Hospital, Harvard University
+ 2 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
48
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Therapy-induced APOBEC3A drives evolution of persistent cancer cells

Hideko Isozaki et al.Mar 24, 2024
+38
A
R
H
0
Paper
Citation34
0
Save
13

APOBEC3A drives acquired resistance to targeted therapies in non-small cell lung cancer

Hideko Isozaki et al.Oct 24, 2023
+34
N
A
H
Abstract Acquired drug resistance to even the most effective anti-cancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified 1‒6 , the underlying molecular mechanisms shaping tumor evolution during treatment are incompletely understood. The extent to which therapy actively drives tumor evolution by promoting mutagenic processes 7 or simply provides the selective pressure necessary for the outgrowth of drug-resistant clones 8 remains an open question. Here, we report that lung cancer targeted therapies commonly used in the clinic induce the expression of cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Induction of A3A facilitated the formation of double-strand DNA breaks (DSBs) in cycling drug-treated cells, and fully resistant clones that evolved from drug-tolerant intermediates exhibited an elevated burden of chromosomal aberrations such as copy number alterations and structural variations. Preventing therapy-induced A3A mutagenesis either by gene deletion or RNAi-mediated suppression delayed the emergence of drug resistance. Finally, we observed accumulation of A3A mutations in lung cancer patients who developed drug resistance after treatment with sequential targeted therapies. These data suggest that induction of A3A mutagenesis in response to targeted therapy treatment may facilitate the development of acquired resistance in non-small-cell lung cancer. Thus, suppressing expression or enzymatic activity of A3A may represent a potential therapeutic strategy to prevent or delay acquired resistance to lung cancer targeted therapy.
0

Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes

Ihsan Dereli et al.May 27, 2024
+19
F
V
I
Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)-modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
1

Acquired Cross-resistance in Small Cell Lung Cancer due to Extrachromosomal DNA Amplification ofMYCparalogs

Shreoshi Choudhuri et al.Oct 24, 2023
+19
J
L
S
ABSTRACT Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here we present a pre-clinical system that recapitulates acquired cross-resistance in SCLC, developed from 51 patient-derived xenografts (PDXs). Each model was tested for in vivo sensitivity to three clinical regimens: cisplatin plus etoposide, olaparib plus temozolomide, and topotecan. These functional profiles captured hallmark clinical features, such as the emergence of treatment-refractory disease after early relapse. Serially derived PDX models from the same patient revealed that cross-resistance was acquired through a MYC amplification on extrachromosomal DNA (ecDNA). Genomic and transcriptional profiles of the full PDX panel revealed that this was not unique to one patient, as MYC paralog amplifications on ecDNAs were recurrent among cross-resistant models derived from patients after relapse. We conclude that ecDNAs with MYC paralogs are recurrent drivers of cross-resistance in SCLC. SIGNIFICANCE SCLC is initially chemosensitive, but acquired cross-resistance renders this disease refractory to further treatment and ultimately fatal. The genomic drivers of this transformation are unknown. We use a population of PDX models to discover that amplifications of MYC paralogs on ecDNA are recurrent drivers of acquired cross-resistance in SCLC.
0

ANKRD31 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between heterologous sex chromosomes in mice

Frantzeskos Papanikos et al.May 7, 2020
+14
E
J
F
Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a critical component of complexes of DSB-promoting proteins which assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution owing to reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects are accompanied by a genome-wide delay in assembling DSB-promoting proteins on axes and a loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated complexes of DSB-promoting proteins.
0

ATR is a multifunctional regulator of male mouse meiosis

Alexander Widger et al.May 7, 2020
+10
J
S
A
Meiotic cells undergo genetic exchange between homologous chromosomes through programmed DNA double-strand break (DSB) formation, recombination and synapsis [1, 2]. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes [3-6]. However, the meiotic functions of another major PIKK, ATR, have remained elusive, because germ line-specific depletion of this kinase is challenging. Using an efficient conditional strategy, we uncover roles for ATR in male mouse prophase I progression. Deletion of ATR causes chromosome axis fragmentation and germ cell elimination at mid pachynema. ATR is required for homologous synapsis, in a manner genetically dissociable from DSB formation. In addition, ATR regulates loading of recombinases RAD51 and DMC1 to DSBs and maintenance of recombination foci on synapsed and asynapsed chromosomes. Mid pachytene spermatocyte elimination in ATR deficient mice cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germ line. Our studies identify ATR as a multifunctional regulator of mouse meiosis.