The conventional outflow pathway is a complex tissue responsible for maintaining intraocular pressure (IOP) homeostasis. The coordinated effort of multiple cells with differing responsibilities ensure healthy outflow function and IOP maintenance. Dysfunction of one or more resident cell type results in ocular hypertension and risk for glaucoma, a leading cause of blindness. In this study, single cell RNA sequencing was performed to generate a comprehensive cell atlas of human conventional outflow tissues. We obtained 17757 genes expression profiles from 8758 cells from eight eyes of four donors representing the outflow cell transcriptome. Upon clustering analysis, 12 distinct cell types were identified, and region-specific expression of candidate genes were mapped in human tissues. Significantly, we identified two distinct expression patterns (myofibroblast and fibroblast) from cells located in the trabecular meshwork (TM), the primary structural component of the conventional outflow pathway. We also located neuron and macrophage signatures in the TM. The second primary component structure, Schlemms canal displayed a unique combination of lymphatic/blood vascular gene expression. Other expression clusters corresponded to cells from neighboring tissues, predominantly in the ciliary muscle/scleral spur, which together correspond to the uveoscleral outflow path. Importantly, the utility of our atlas was demonstrated by mapping glaucoma- relevant genes to outflow cell clusters. Our study provides a comprehensive molecular and cellular classification of conventional and unconventional outflow pathway structures responsible for IOP homeostasis.