NL
Nathan Lack
Author with expertise in Advancements in Prostate Cancer Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(88% Open Access)
Cited by:
950
h-index:
30
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells

Can Küçük et al.Jan 14, 2015
Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy. NK-cell and γδ-T cell lymphoma share clinic-pathological features; however the driving mutations are largely unknown. Here the authors, using a combination of RNA-Seq analysis, targeted re-sequencing and functional analysis, identify frequent activating mutations in STAT3 and STAT5Bthat may be driver mutations in these diseases.
0
Citation355
0
Save
37

EPIKOL, a chromatin-focused CRISPR/Cas9-based screening platform, to identify cancer-specific epigenetic vulnerabilities

Orhan Bayram et al.May 17, 2021
ABSTRACT Dysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To discover new drug targets for more targeted and personalized therapies, functional interrogation of epigenetic modifiers is essential. We therefore generated an epigenome-wide CRISPR-Cas9 knock-out library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution, depletion of essential genes and steady behaviors of non-targeting sgRNAs. From this, we discovered novel epigenetic modifiers besides previously known ones that regulate triple-negative breast cancer and prostate cancer cell fitness. With further validation assays, we confirmed the growth-regulatory function of individual candidates, including SS18L2 and members of the NSL complex (KANSL2, KANSL3, KAT8) in triple negative breast cancer cells. Overall, we show that EPIKOL, a focused sgRNA library targeting approximately 800 genes, can reveal epigenetic modifiers that are essential for cancer cell fitness and serve as a tool to offer novel anti-cancer targets. With its thoroughly generated epigenome-wide gene list, and the relatively high number of sgRNAs per gene, EPIKOL offers a great advantage to study functional roles of epigenetic modifiers in a wide variety of research applications, such as screens on primary cells, patient-derived xenografts as well as in vivo models.
37
Citation5
0
Save
29

Functional mapping of androgen receptor enhancer activity

Chia-Chi Huang et al.Aug 18, 2020
Abstract Androgen receptor (AR) is critical to the initiation, growth and progression of almost all prostate cancers. Once activated, the AR binds to cis -regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10-100x more binding sites than differentially expressed genes. It still remains unclear how individual sites contribute to AR-mediated transcription. While descriptive functional genomic approaches broadly correlate with enhancer activity, they do not provide the locus-specific resolution needed to delineate the underlying regulatory logic of AR-mediated transcription. Therefore, we functionally tested all commonly occuring clinical AR binding sites with Self-Transcribing Active Regulatory Regions sequencing (STARRseq) to generate the first map of intrinsic AR enhancer activity. This approach is not significantly affected by endogenous chromatin modifications and measures the potential enhancer activity at each cis -regulatory element. Interestingly we found that only 7% of AR binding sites displayed increased enhancer activity upon hormonal stimulation. Instead, the vast majority of AR binding sites were either inactive (81%) or constitutively active enhancers (11%). These annotations strongly correlated with enhancer-associated features in both cell line and clinical prostate cancer. With these validated annotations we next investigated the effect of each enhancer class on transcription and found that AR-driven inducible enhancers frequently interacted with promoters, forming central chromosomal loops critical for gene transcription. We demonstrated that these inducible enhancers act as regulatory hubs that increase contacts with both other AR binding sites and gene promoters. This functional map was used to identify a somatic mutation that significantly reduces the expression of a commonly mutated AR-regulated tumour suppressor. Together, our data reveal a complex interplay between different AR binding sites that work in a highly coordinated manner to drive gene transcription.
29
Citation2
0
Save
0

Decoding the Epigenetics and Chromatin Loop Dynamics of Androgen Receptor-Mediated Transcription

Umut Altıntaş et al.Dec 23, 2023
ABSTRACT Androgen receptor (AR)-mediated transcription plays a critical role in normal prostate development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigated the AR-driven epigenetic and chromosomal chromatin looping changes. We collected a kinetic multiomic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we found that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we showed that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then proposed and experimentally validated an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide new insight into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
0
Citation1
0
Save
20

Protein scaffold-based multimerization of soluble ACE2 efficiently blocks SARS-CoV-2 infection in vitro and in vivo

Alişan Kayabölen et al.Jan 6, 2021
Abstract Soluble ACE2 (sACE2) decoy receptors are promising agents to inhibit SARS-CoV-2, as their efficiency is less likely to be affected by common escape mutations in viral proteins. However, their success may be limited by their relatively poor potency. To address this challenge, we developed a large decoy library of sACE2 fusion proteins, generated with several protease inhibitors or multimerization tags. Among these decoys, multimeric sACE2 consisting of SunTag or MoonTag systems, which were originally utilized for signal amplification or gene activation systems, were extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates. These novel sACE2 fusion proteins exhibited greater than 100-fold SARS-CoV-2 neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag in combination with a more potent version of sACE2, which has multiple point mutations for greater binding (v1), achieved near complete neutralization at a sub-nanomolar range, comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutant versions of Spike, alpha, beta, gamma or delta variants, were also neutralized efficiently with SunTag or MoonTag fused sACE2(v1). Finally, therapeutic treatment of sACE2(v1)-MoonTag provided protection against SARS-CoV-2 infection in an in vivo mouse model. Overall, we suggest that the superior activity of the sACE2-SunTag or sACE2-MoonTag fusions is due to the greater occupancy of the multimeric sACE2 receptors on Spike protein as compared to monomeric sACE2. Therefore, these highly potent multimeric sACE2 decoy receptors may offer a promising treatment approach against SARS-CoV-2 infections. One Sentence Summary Multimerization of sACE2 markedly enhanced the neutralization of SARS-CoV-2 by blocking multiple viral spike proteins simultaneously.
20
Citation1
0
Save
0

Chromatin-focused genetic and chemical screens identify BRPF1 as a targetable vulnerability in Taxol-resistant triple-negative breast cancer

Orhan Bayram et al.Apr 20, 2024
ABSTRACT Triple-negative breast cancer (TNBC) stands out as a particularly aggressive and frequently recurring form of breast cancer. Due to the absence of hormone receptors, the available treatment avenues are constrained, making chemotherapy the primary approach. Unfortunately, the development of resistance to chemotherapy poses a significant challenge, further restricting the already limited therapeutic alternatives for recurrent cases. Understanding the molecular basis of chemotherapy resistance in TNBC is pivotal for improving treatment outcomes. Here, we generated two different Taxol-resistant TNBC cell lines with a dose-escalation method to mimic chemotherapy resistance in vitro . These cells exhibited hallmark features of resistance, including reduced cell growth, altered morphology, and evasion of apoptosis. Transcriptome analysis uncovered elevated ABCB1 expression and multidrug-resistant phenotype in the resistant cells. To comprehensively investigate the key epigenetic regulators of Taxol resistance, we conducted chromatin-focused genetic and chemical screens and pinpointed Bromodomain and PHD Finger Containing 1 (BRPF1) as a novel regulator of Taxol resistance in TNBC cells. Knockout of BRPF1, the reader protein in the MOZ/MORF histone acetyl-transferase complex, but not the other complex members, sensitized resistant cells to Taxol. Additionally, BRPF1 inhibitors, PFI-4 and OF-1, in combination with Taxol significantly reduced cell viability. Transcriptome analysis upon BRPF1 loss or inhibition revealed a negative impact on ribosome biogenesis-related gene sets, resulting in a global decrease in protein translation in Taxol-resistant cells. Our ChIP-qPCR analysis demonstrated that active BRPF1 directly interacts with the ABCB1 promoter, enhancing its expression towards inducing a multidrug-resistant phenotype. Conversely, knockout or inhibition of BRPF1 leads to decreased ABCB1 expression. This dual mechanism critically sensitizes Taxol-resistant TNBC cells to chemotherapy. Our findings uncover a comprehensive molecular framework, highlighting the pivotal role of epigenetic reader protein BRPF1 in Taxol resistance and providing potential avenues for therapeutic intervention in TNBC.
1

Optimized high-throughput screening of non-coding variants identified from genome-wide association studies

Tunç Morova et al.Mar 12, 2022
Abstract The vast majority of disease-associated single nucleotide polymorphisms identified from genome-wide association study (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and number of variants tested per loci. Using this strategy, we interrogated 70 of 140 known prostate cancer (PCa) risk-associated loci and demonstrated that 26 (37%) of them harbor 36 SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.
8

Epigenetic-focused CRISPR/Cas9 screen identifies ASH2L as a regulator of glioblastoma cell survival

Ezgi Ozyerli‐Goknar et al.Aug 17, 2022
ABSTRACT Glioblastoma is the most common and aggressive primary brain tumor with poor prognosis, highlighting an urgent need for novel treatment strategies. In this study, we investigated epigenetic regulators of glioblastoma cell survival through CRISPR/Cas9 based genetic ablation screens using a customized sgRNA library EpiDoKOL, which targets critical functional domains of chromatin modifiers. Screens conducted in multiple cell lines revealed ASH2L , a histone lysine methyltransferase complex subunit, as a major regulator of glioblastoma cell viability. ASH2L depletion led to cell cycle arrest and apoptosis. RNA sequencing and greenCUT&RUN together identified a set of cell cycle regulatory genes, such as TRA2B, BARD1, KIF20B, ARID4A and SMARCC1 that were downregulated upon ASH2L depletion. Mass spectrometry analysis revealed the interaction partners of ASH2L in glioblastoma cell lines as SET1/MLL family members including SETD1A, SETD1B, MLL1 and MLL2. We further showed that glioblastoma cells had a differential dependency on expression of SET1/MLL family members for survival. The growth of ASH2L -depleted glioblastoma cells was markedly slower than controls in orthotopic in vivo models. TCGA analysis showed high ASH2L expression in glioblastoma compared to low grade gliomas and immunohistochemical analysis revealed significant ASH2L expression in glioblastoma tissues, attesting to its clinical relevance. Therefore, high throughput, robust and affordable screens with focused libraries, such as EpiDoKOL, holds great promise to enable rapid discovery of novel epigenetic regulators of cancer cell survival, such as ASH2L . Together, we suggest that targeting ASH2L could serve as a new therapeutic opportunity for glioblastoma.
Load More