SH
Shin‐ichi Higashijima
Author with expertise in Zebrafish as a Model Organism for Multidisciplinary Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(62% Open Access)
Cited by:
2,934
h-index:
52
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visualization of Cranial Motor Neurons in Live Transgenic Zebrafish Expressing Green Fluorescent Protein Under the Control of theIslet-1Promoter/Enhancer

Shin‐ichi Higashijima et al.Jan 1, 2000
We generated germ line-transmitting transgenic zebrafish that express green fluorescent protein (GFP) in the cranial motor neurons. This was accomplished by fusing GFP sequences to Islet-1 promoter/enhancer sequences that were sufficient for neural-specific expression. The expression of GFP by the motor neurons in the transgenic fish enabled visualization of the cell bodies, main axons, and the peripheral branches within the muscles. GFP-labeled motor neurons could be followed at high resolution for at least up to day four, when most larval neural circuits become functional, and larvae begin to swim and capture prey. Using this line, we analyzed axonal outgrowth by the cranial motor neurons. Furthermore, by selective application of DiI to specific GFP-positive nerve branches, we showed that the two clusters of trigeminal motor neurons in rhombomeres 2 and 3 innervate different peripheral targets. This finding suggests that the trigeminal motor neurons in the two clusters adopt distinct fates. In future experiments, this transgenic line of zebrafish will allow for a genetic analysis of cranial motor neuron development.
0
Citation541
0
Save
0

High-Frequency Generation of Transgenic Zebrafish Which Reliably Express GFP in Whole Muscles or the Whole Body by Using Promoters of Zebrafish Origin

Shin‐ichi Higashijima et al.Dec 1, 1997
Despite a number of reports on transgenic zebrafish, there have been no reports on transgenic zebrafish in which the gene is under the control of a promoter of zebrafish origin. Neither have there been reports on transgenic zebrafish in which the gene is under the control of a tissue-specific promoter/enhancer. To investigate whether it is possible to generate transgenic zebrafish which reliably express a reporter gene in specific tissues, we have isolated a zebrafish muscle-specificactin(α-actin) promoter and generated transgenic zebrafish in which the green fluorescent protein (GFP) reporter gene was driven by this promoter. In total, 41 GFP-expressing transgenic lines were generated with a frequency of as high as 21% (41 of 194), and GFP was specifically expressed throughout muscle cells in virtually all of the lines (40 of 41). Nonexpressing transgenic lines were rare. This demonstrates that a tissue-specific promoter can reliably drive reporter gene expression in transgenic zebrafish in a manner identical to the control of the endogeneous expression of the gene. Levels of GFP expression varied greatly from line to line; i.e., fluorescence was very weak in some lines, while it was extremely high in others. We also isolated a zebrafish cytoskeletal β-actinpromoter and generated transgenic zebrafish using a β-actin–GFP construct. In all of the four lines generated, GFP was expressed throughout the body like the β-actingene, demonstrating that consistent expression could also be achieved in this case. In the present study, we also examined the effects of factors which potentially affect the transgenic frequency or expression levels. The following results were obtained: (i) expression levels of GFP in the injected embryo were not strongly correlated to transgenic frequency; (ii) the effect of the NLS peptide (SV40 T antigen nuclear localization sequence), which has been suggested to facilitate the transfer of a transgene into embryonic nuclei, remained to be elusive; (iii) a plasmid vector sequence placed upstream of the construct might reduce the expression levels of the reporter gene.
0
Citation423
0
Save
0

Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering

Yukiko Kimura et al.Oct 8, 2014
Abstract The type II bacterial CRISPR/Cas9 system is rapidly becoming popular for genome-engineering due to its simplicity, flexibility and high efficiency. Recently, targeted knock-in of a long DNA fragment via homology-independent DNA repair has been achieved in zebrafish using CRISPR/Cas9 system. This raised the possibility that knock-in transgenic zebrafish could be efficiently generated using CRISPR/Cas9. However, how widely this method can be applied for the targeting integration of foreign genes into endogenous genomic loci is unclear. Here, we report efficient generation of knock-in transgenic zebrafish that have cell-type specific Gal4 or reporter gene expression. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) targeted for genome digestion, a sgRNA targeted for donor plasmid digestion and Cas9 mRNA. We have succeeded in establishing stable knock-in transgenic fish with several different constructs for 4 genetic loci at a frequency being exceeding 25%. Due to its simplicity, design flexibility and high efficiency, we propose that CRISPR/Cas9-mediated knock-in will become a standard method for the generation transgenic zebrafish.
0
Citation315
0
Save
0

Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons

Chie Satou et al.Aug 15, 2013
The developing nervous system consists of a variety of cell types. Transgenic animals expressing reporter genes in specific classes of neuronal cells are powerful tools for the study of neuronal network formation. We generated a wide variety of transgenic zebrafish that expressed reporter genes in specific classes of neurons or neuronal progenitors. These include lines in which neurons of specific neurotransmitter phenotypes expressed fluorescent proteins or Gal4, and lines in which specific subsets of the dorsal progenitor domain in the spinal cord expressed fluorescent proteins. Using these, we examined domain organization in the developing dorsal spinal cord, and found that there are six progenitor domains in zebrafish, which is similar to the domain organization in mice. We also systematically characterized neurotransmitter properties of the neurons that are produced from each domain. Given that reporter gene expressions occurs in a wide area of the nervous system in the lines generated, these transgenic fish should serve as powerful tools for the investigation of not only the neurons in the dorsal spinal cord but also neuronal structures and functions in many other regions of the nervous system.
0
Citation215
0
Save
56

Synaptic Encoding of Vestibular Sensation Regulates Movement Timing and Coordination

Kyla Hamling et al.Jul 5, 2021
Abstract Vertebrate vestibular circuits use sensory signals derived from the inner ear to guide both corrective and volitional movements. A major challenge in the neuroscience of balance is to link the synaptic and cellular substrates that encode body tilts to specific behaviors that stabilize posture and enable efficient locomotion. Here we address this problem by measuring the development, synaptic architecture, and behavioral contributions of vestibulospinal neurons in the larval zebrafish. First, we find that vestibulospinal neurons are born and are functionally mature before larvae swim freely, allowing them to act as a substrate for postural regulation. Next, we map the synaptic inputs to vestibulospinal neurons that allow them to encode posture. Further, we find that this synaptic architecture allows them to respond to linear acceleration in a directionally-tuned and utricle-dependent manner; they are thus poised to guide corrective movements. After loss of vestibulospinal neurons, larvae adopted eccentric postures with disrupted movement timing and weaker corrective kinematics. We used a generative model of swimming to demonstrate that together these disruptions can account for the increased postural variability. Finally, we observed that lesions disrupt vestibular-dependent coordination between the fins and trunk during vertical swimming, linking vestibulospinal neurons to navigation. We conclude that vestibulospinal neurons turn synaptic representations of body tilt into defined corrective behaviors and coordinated movements. As the need for stable locomotion is common and the vestibulospinal circuit is highly conserved our findings reveal general mechanisms for neuronal control of balance.
56
Citation13
0
Save
Load More