VO
Victor Olivas
Author with expertise in Advancements in Lung Cancer Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(65% Open Access)
Cited by:
2,843
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer

Zhenfeng Zhang et al.Jul 1, 2012
Trever Bivona and colleagues identify the upregulation of the AXL kinase in human non–small cell lung cancer with acquired resistance to erlotinib. Inhibition of AXL restores sensitivity to erlotinib in in vitro and in vivo tumor models. The authors suggest AXL as a potential therapeutic target that may prevent or overcome acquired resistance in patients with EGFR-mutant lung cancer. Human non–small cell lung cancers (NSCLCs) with activating mutations in EGFR frequently respond to treatment with EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, but responses are not durable, as tumors acquire resistance. Secondary mutations in EGFR (such as T790M) or upregulation of the MET kinase are found in over 50% of resistant tumors. Here, we report increased activation of AXL and evidence for epithelial-to-mesenchymal transition (EMT) in multiple in vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to erlotinib in the absence of the EGFR p.Thr790Met alteration or MET activation. Genetic or pharmacological inhibition of AXL restored sensitivity to erlotinib in these tumor models. Increased expression of AXL and, in some cases, of its ligand GAS6 was found in EGFR-mutant lung cancers obtained from individuals with acquired resistance to TKIs. These data identify AXL as a promising therapeutic target whose inhibition could prevent or overcome acquired resistance to EGFR TKIs in individuals with EGFR-mutant lung cancer.
0
Citation1,100
0
Save
0

Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers

Collin Blakely et al.Nov 6, 2017
Analysis of a large cohort of EGFR-mutant lung cancer cell-free DNA samples along with longitudinal samples from a patient with EGFR-mutant lung cancer identifies pathways that inhibit EGFR-inhibitor response. Co-occurring genetic alterations influence clinical outcomes and underscore the need for combination therapies. A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We defined new pathways limiting EGFR-inhibitor response, including WNT/β-catenin alterations and cell-cycle-gene (CDK4 and CDK6) mutations. Tumor genomic complexity increases with EGFR-inhibitor treatment, and co-occurring alterations in CTNNB1 and PIK3CA exhibit nonredundant functions that cooperatively promote tumor metastasis or limit EGFR-inhibitor response. This study calls for revisiting the prevailing single-gene driver-oncogene view and links clinical outcomes to co-occurring genetic alterations in patients with advanced-stage EGFR-mutant lung cancer.
0
Citation449
0
Save
0

RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers

Robert Nichols et al.Aug 8, 2018
Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAFV600E-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS-GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRASG12C). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS-GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS-GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.
0
Citation322
0
Save
4

Deficiency of the splicing factor RBM10 limits EGFR inhibitor response in EGFR mutant lung cancer

Shigeki Nanjo et al.Oct 27, 2020
Abstract Molecularly targeted cancer therapy has improved outcomes for cancer patients with targetable oncoproteins, such as mutant epidermal growth factor receptor ( EGFR ) in lung cancer. Yet, long-term patient survival remains limited because treatment responses are typically incomplete. One potential explanation for the lack of complete and durable responses is that oncogene-driven cancers with activating mutations in the EGFR often harbor additional co-occurring genetic alterations. This hypothesis remains untested for most genetic alterations that co-occur with mutant EGFR . Here, we report the functional impact of inactivating genetic alteration of the mRNA splicing factor RBM10 that co-occur with mutant EGFR . RBM10 deficiency decreased EGFR inhibitor efficacy in patient-derived EGFR mutant tumor models. RBM10 modulated mRNA alternative splicing of the mitochondrial apoptotic regulator Bcl-x to regulate tumor cell apoptosis during treatment. Genetic inactivation of RBM10 diminished EGFR inhibitor-mediated apoptosis by decreasing the ratio of Bcl-xS-(pro-apoptotic)-to-Bcl-xL(anti-apoptotic) Bcl-x isoforms. RBM10 deficiency was a biomarker of poor response to EGFR inhibitor treatment in clinical samples. Co-inhibition of Bcl-xL and mutant EGFR overcame resistance induced by RBM10 deficiency. This study sheds light on the role of co-occurring genetic alterations, and on the impact of splicing factor deficiency in the modulation of sensitivity to targeted kinase inhibitor cancer therapy.
4
Citation1
0
Save
52

A tyrosine kinase protein interaction map reveals targetable EGFR network oncogenesis in lung cancer

Swati Kaushik et al.Jul 3, 2020
SUMMARY Signaling networks balance the activities of many physically interacting proteins and perturbations to this network influence downstream signaling, potentially leading to oncogenic states. Using affinity purification-mass spectrometry we defined this network for all 90 human tyrosine kinases revealing 1,463 mostly novel interactions between these key cancer proteins and diverse molecular complexes. Modulation of interactor levels altered growth phenotypes associated with corresponding tyrosine kinase partners suggesting that tumors may alter the stoichiometries of interactors to maximize oncogenic signaling. We show that the levels of EGFR interactors delineates this form of network oncogenesis in 19% of EGFR wild-type lung cancer patients which were mostly otherwise oncogene negative, predicting sensitivity to EGFR inhibitors in vitro and in vivo. EGFR network oncogenesis occurs through mechanistically distinct network alleles often in cooperation with weak oncogenes in the MAPK pathway. Network oncogenesis may be a common and targetable convergent mechanism of oncogenic pathway activation in cancer. HIGHLIGHTS A human tyrosine kinome protein interaction map reveals novel physical and functional associations. Dependence on oncogenic tyrosine kinases is modulated through perturbation of their interactors. EGFR network oncogenesis in up to 19% of EGFR wild-type lung cancers is targetable. EGFR network oncogenesis cooperates with weak oncogenes in the MAPK pathway.
52
Citation1
0
Save
Load More