JJ
Jane Jacques
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
17
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
101

All-optical electrophysiology with improved genetically encoded voltage indicators reveals interneuron network dynamics in vivo

He Tian et al.Nov 22, 2021
Abstract All-optical electrophysiology can be a powerful tool for studying neural dynamics in vivo , as it offers the ability to image and perturb membrane voltage in multiple cells simultaneously. The “Optopatch” constructs combine a red-shifted archaerhodopsin (Arch)-derived genetically encoded voltage indicator (GEVI) with a blue-shifted channelrhodopsin actuator (ChR). We used a video-based pooled screen to evolve Arch-derived GEVIs with improved signal-to-noise ratio (QuasAr6a) and kinetics (QuasAr6b). By combining optogenetic stimulation of individual cells with high-precision voltage imaging in neighboring cells, we mapped inhibitory and gap junction-mediated connections, in vivo . Optogenetic activation of a single NDNF-expressing neuron in visual cortex Layer 1 significantly suppressed the spike rate in some neighboring NDNF interneurons. Hippocampal PV cells showed near-synchronous spikes across multiple cells at a frequency significantly above what one would expect from independent spiking, suggesting that collective inhibitory spikes may play an important signaling role in vivo . By stimulating individual cells and recording from neighbors, we quantified gap junction coupling strengths. Together, these results demonstrate powerful new tools for all-optical microcircuit dissection in live mice.
101
Citation13
0
Save
5

Highly Parallelized, Multicolor Optogenetic Recordings of Cellular Activity for Therapeutic Discovery Applications in Ion Channels and Disease-Associated Excitable Cells

Gabriel Borja et al.Jul 4, 2022
Optogenetic assays provide a flexible, scalable, and information rich approach to probe compound effects for ion channel drug targets in both heterologous expression systems and associated disease relevant cell types. Despite the potential utility and growing adoption of optogenetics, there remains a critical need for compatible platform technologies with the speed, sensitivity, and throughput to enable their application to broader drug screening applications. To address this challenge, we developed the SwarmTM, a custom designed optical instrument for highly parallelized, multicolor measurements in excitable cells, simultaneously recording changes in voltage and calcium activities at high temporal resolution under optical stimulation. The compact design featuring high power LEDs, large numerical aperture optics, and fast photodiode detection enables all-optical individual well readout of 24-wells simultaneously from multi-well plates while maintaining sufficient temporal resolution to probe millisecond response dynamics. The Swarm delivers variable intensity blue-light optogenetic stimulation to enable membrane depolarization and red or lime-light excitation to enable fluorescence detection of the resulting changes in membrane potential or calcium levels, respectively. The Swarm can screen ~10,000 wells/day in 384-well format, probing complex pharmacological interactions via a wide array of stimulation protocols. To evaluate the Swarm screening system, we optimized a series of heterologous optogenetic spiking HEK293 cell assays for several voltage-gated sodium channel subtypes including Nav1.2, Nav1.5, and Nav1.7. The Swarm was able to record pseudo-action potentials stably across all 24 objectives and provided pharmacological characterization of diverse sodium channel blockers. We performed a Nav1.7 screen of 200,000 small molecules in a 384-well plate format with all 560 plates reaching a Z' > 0.5. As a demonstration of the versatility of the Swarm, we also developed an assay measuring cardiac action potential and calcium waveform properties simultaneously under paced conditions using human induced pluripotent stem (iPS) cell-derived cardiomyocytes as an additional counter screen for cardiac toxicity. In summary, the Swarm is a novel high-throughput all-optical system capable of collecting information-dense data from optogenetic assays in both heterologous and iPS cell-derived models, which can be leveraged to drive diverse therapeutic discovery programs for nervous system disorders and other disease areas involving excitable cells.
0

Discovery of novel compounds and target mechanisms using a high throughput, multiparametric phenotypic screen in a human neuronal model of Tuberous Sclerosis

Luis Williams et al.Feb 25, 2024
SUMMARY Tuberous sclerosis complex (TSC) is a rare genetic disorder caused by mutations in the mTOR pathway genes TSC1 or TSC2 . TSC can affect multiple organs including the brain, and most patients (75-90%) present with seizures during early childhood and intractable epilepsy throughout life. mTOR inhibitors, part of the current standard of care, lack the optimal characteristics to fully address patient phenotypes. Here, we report on the application of our all-optical electrophysiology platform for phenotypic screening in a human neuronal model of TSC. We used CRISPR/Cas9-isogenic TSC2 −/− iPS cell lines to identify disease-associated changes to neuronal morphology, transcript expression and neuronal excitability. We established a robust multiparametric electrophysiological phenotype which we then validated in TSC patient-derived neurons. We used this phenotype to conduct a screen of ∼30,000 small molecule compounds in human iPS cell-derived neurons and identified chemical scaffolds that rescued the functional TSC disease parameters. Confirmed hits may act via different mechanisms than direct mTOR pathway inhibition. This strategy provides molecular starting points for therapeutic development in TSC and a framework for phenotype discovery and drug screening in other neurological disorders.
0
Citation1
0
Save
1

Highly Parallelized, Multicolor Optogenetic Recordings of Cellular Activity for Therapeutic Discovery Applications in Ion Channels and Disease-associated Excitable Cells

Gabriel Borja et al.Apr 11, 2022
Abstract Optogenetic assays provide a flexible, scalable and information rich approach to probe compound effects for ion channel drug targets in both heterologous expression systems and associated disease relevant cell types. Despite the potential utility and growing adoption of optogenetics, there remains a critical need for compatible platform technologies with the speed, sensitivity, and throughput to enable their application to broader drug screening applications. To address this challenge, we developed the Swarm™, a custom designed optical instrument for highly parallelized, multicolor measurements in excitable cells, simultaneously recording changes in voltage and calcium activities at high temporal resolution under optical stimulation. The compact design featuring high power LEDs, large numerical aperture optics, and fast photodiode detection enables all-optical individual well readout of 24-wells simultaneously from multi-well plates while maintaining sufficient temporal resolution to probe millisecond response dynamics. The Swarm delivers variable intensity blue-light optogenetic stimulation to enable membrane depolarization and red or lime-light excitation to enable fluorescence detection of the resulting changes in membrane potential or calcium levels, respectively. The Swarm can screen ~10,000 wells / day in 384-well format, probing complex pharmacological interactions via a wide array of stimulation protocols. To evaluate the Swarm screening system, we optimized a series of heterologous optogenetic spiking HEK293 cell assays for several voltage-gated sodium channel subtypes including Nav1.2, Nav1.5, and Nav1.7. The Swarm was able to record pseudo-action potentials stably across all 24 objectives and provided pharmacological characterization of diverse sodium channel blockers. We performed a Nav1.7 screen of 200,000 small molecules in a 384-well plate format with all 560 plates reaching a Z’≥0.5. As a demonstration of the versatility of the Swarm, we also developed an assay measuring cardiac action potential and calcium waveform properties simultaneously under paced conditions using human induced pluripotent stem (iPS) cell-derived cardiomyocytes as an additional counter screen for cardiac toxicity. In summary, the Swarm is a novel high-throughput all-optical system capable of collecting information-dense data from optogenetic assays in both heterologous and iPS cell-derived models, which can be leveraged to drive diverse therapeutic discovery programs for nervous system disorders and other disease areas involving excitable cells.
6

A phenotypic screening platform for chronic pain therapeutics using all-optical electrophysiology

Pin Liu et al.Dec 13, 2022
Abstract Chronic pain associated with osteoarthritis (OA) remains an intractable problem with few effective treatment options. New approaches are needed to model the disease biology and to drive discovery of therapeutics. Here, we present an in vitro model of OA pain, where dorsal root ganglion (DRG) sensory neurons were sensitized by a defined mixture of disease-relevant inflammatory mediators, here called Sensitizing PAin Reagent Composition or SPARC . OA-SPARC components showed synergistic or additive effects when applied in combination and induced pain phenotypes in vivo . To measure the effect of OA-SPARC on neural firing in a scalable format for drug discovery, we used a custom system for high throughput all-optical electrophysiology. This system enabled light-based membrane voltage recordings from hundreds of neurons in parallel with single cell resolution and a throughput of up to 500,000 neurons per day, with patch clamp-like single action potential resolution. A computational framework was developed to construct a multiparameter OA-SPARC neuronal phenotype and to quantitatively assess phenotype reversal by candidate pharmacology with different mechanisms of action. We screened ~3000 approved drugs and mechanistically focused compounds, yielding data from over 1.2 million individual neurons with detailed assessment of both functional OA-SPARC phenotype rescue and orthogonal “off-target” effects. Analysis of confirmed hits revealed diverse potential analgesic mechanisms including well-known ion channel modulators as well as less characterized mechanisms including MEK inhibitors and tyrosine kinase modulators, providing validation of the platform for pain drug discovery.