LR
Luke Reilly
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
26
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A fully automated FAIMS-DIA proteomic pipeline for high-throughput characterization of iPSC-derived neurons

Luke Reilly et al.Nov 25, 2021
Abstract Fully automated proteomic pipelines have the potential to achieve deep coverage of cellular proteomes with high throughput and scalability. However, it is important to evaluate performance, including both reproducibility and ability to provide meaningful levels of biological insight. Here, we present an approach combining high field asymmetric waveform ion mobility spectrometer (FAIMS) interface and data independent acquisition (DIA) proteomics approach developed as part of the induced pluripotent stem cell (iPSC) Neurodegenerative Disease Initiative (iNDI), a large-scale effort to understand how inherited diseases may manifest in neuronal cells. Our FAIMS-DIA approach identified more than 8000 proteins per mass spectrometry (MS) acquisition as well as superior total identification, reproducibility, and accuracy compared to other existing DIA methods. Next, we applied this approach to perform a longitudinal proteomic profiling of the differentiation of iPSC-derived neurons from the KOLF2.1J parental line used in iNDI. This analysis demonstrated a steady increase in expression of mature cortical neuron markers over the course of neuron differentiation. We validated the performance of our proteomics pipeline by comparing it to single cell RNA-Seq datasets obtained in parallel, confirming expression of key markers and cell type annotations. An interactive webapp of this temporal data is available for aligned-UMAP visualization and data browsing ( https://share.streamlit.io/anant-droid/singlecellumap ). In summary, we report an extensively optimized and validated proteomic pipeline that will be suitable for large-scale studies such as iNDI.
1
Citation12
0
Save
76

A reference induced pluripotent stem cell line for large-scale collaborative studies

Caroline Pantazis et al.Dec 17, 2021
Abstract Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate iPSC lines and deeply characterised their genetic properties using whole genome sequencing, their genomic stability upon CRISPR/Cas9-based gene editing, and their phenotypic properties including differentiation to commonly-used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and hundreds of its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field. Summary The authors of this collaborative study deeply characterized human induced pluripotent stem cell (iPSC) lines to rationally select a clonally-derived cell line that performs well across multiple modalities. KOLF2.1J was identified as a candidate reference cell line based on single-cell analysis of its gene expression in the pluripotent state, whole genome sequencing, genomic stability after highly efficient CRISPR-mediated gene editing, integrity of the p53 pathway, and the efficiency with which it differentiated into multiple target cell populations. Since it is deeply characterized and can be readily acquired, KOLF2.1J is an attractive reference cell line for groups working with iPSCs. Graphical abstract
76
Citation9
0
Save
5

Loss of PI3-kinase activity of inositol polyphosphate multikinase impairs PDK1-mediated AKT activation, cell migration and intestinal homeostasis

Prasun Guha et al.Dec 18, 2020
Abstract Inositol polyphosphate multikinase (IPMK) is a rate-limiting enzyme in the inositol phosphate (IP) pathway which converts IP3 to IP4 and IP5. In mammalian cells, IPMK can also act as a phosphoinositol-3-kinase (PI3-kinase). We previously found that IPMK is a critical PI3-kinase activator of AKT. Here, we show that IPMK mediates AKT activation by promoting membrane localization and activation of PDK1. The PI3-kinase activity of IPMK is dispensable for membrane localization of AKT, which is entirely controlled by classical PI3-kinase (p110 α ,ß, γ, δ ). By contrast, we found that PDK1 membrane localization was largely independent of classical PI3-kinase. Membrane localization of PDK1 stimulates cell migration by dissociating ROCK1 from inhibitory binding to RhoE and promoting ROCK1-mediated myosin light chain (MLC) phosphorylation. Deletion of IPMK impairs cell migration associated with the abolition of PDK1-mediated ROCK1 disinhibition and subsequent MLC phosphorylation. To investigate the physiological relevance of IPMK-mediated AKT activation, we generated mice selectively lacking IPMK in epithelial cells of the intestine, where IPMK is highly expressed. Deletion of IPMK in intestinal epithelial cells markedly reduced AKT phosphorylation and diminished numbers of Paneth cells – a crypt-resident epithelial cell type that generates the physiological niche for intestinal stem cells. Ablation of IPMK impaired intestinal epithelial cell regeneration basally and after; chemotherapy-induced damage, suggesting a broad role for IPMK in the activation of AKT and intestinal tissue regeneration. In summary, the PI3-kinase activity of IPMK promotes membrane localization of PDK1, a critical kinase whereby AKT maintains intestinal homeostasis. One Sentence Summary PI3-kinase activity of IPMK is essential for activation of AKT.