EM
Elizabeth McGonagle
Author with expertise in Inflammation and Obesity-Related Metabolic Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
417
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A single-cell atlas of human and mouse white adipose tissue

Margo Emont et al.Mar 16, 2022
White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions. A single-cell atlas of white adipose tissue from mouse and human reveals diverse cell types and similarities and differences across species and dietary conditions.
1
Citation404
0
Save
6

Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler

Samantha Laber et al.Jul 19, 2021
Summary A primary obstacle in translating genetics and genomics data into therapeutic strategies is elucidating the cellular programs affected by genetic variants and genes associated with human diseases. Broadly applicable high-throughput, unbiased assays offer a path to rapidly characterize gene and variant function and thus illuminate disease mechanisms. Here, we report LipocyteProfiler, an unbiased high-throughput, high-content microscopy assay that is amenable to large-scale morphological and cellular profiling of lipid-accumulating cell types. We apply LipocyteProfiler to adipocytes and hepatocytes and demonstrate its ability to survey diverse cellular mechanisms by generating rich context-, and process-specific morphological and cellular profiles. We then use LipocyteProfiler to identify known and novel cellular programs altered by polygenic risk of metabolic disease, including insulin resistance, waist-to-hip ratio and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse phenotypic profiling in lipid-storing cells, and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.
6
Citation12
0
Save
35

A single cell atlas of human and mouse white adipose tissue

Margo Emont et al.Nov 11, 2021
ABSTRACT White adipose tissue (WAT), once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic, heterogenous, and involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control, and host defense 1 . High fat feeding and other metabolic stressors cause dramatic changes in adipose morphology, physiology, and cellular composition 1 , and alterations in adiposity are associated with insulin resistance, dyslipidemia, and type 2 diabetes (T2D) 2 . Here, we provide detailed cellular atlases of human and murine subcutaneous and visceral white fat at single cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells (ASPCs), vascular, and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease, and we provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits, and cell types in the function of WAT across species, depots, and nutritional conditions.
35
Citation1
0
Save