NS
Nila Servaas
Author with expertise in Regulatory T Cell Development and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
14
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

GRaNIE and GRaNPA: Inference and evaluation of enhancer-mediated gene regulatory networks applied to study macrophages

Aryan Kamal et al.Dec 21, 2021
Abstract Among the biggest challenges in the post-GWAS (genome-wide association studies) era is the interpretation of disease-associated genetic variants in non-coding genomic regions. Enhancers have emerged as key players in mediating the effect of genetic variants on complex traits and diseases. Their activity is regulated by a combination of transcription factors (TFs), epigenetic changes and genetic variants. Several approaches exist to link enhancers to their target genes, and others that infer TF-gene connections. However, we currently lack a framework that systematically integrates enhancers into TF-gene regulatory networks. Furthermore, we lack an unbiased way of assessing whether inferred regulatory interactions are biologically meaningful. Here we present two methods, implemented as user-friendly R packages: GRaNIE (Gene Regulatory Network Inference including Enhancers) for building enhancer-based gene regulatory networks (eGRNs) and GRaNPA (Gene Regulatory Network Performance Analysis) for evaluating GRNs. GRaNIE jointly infers TF-enhancer, enhancer-gene and TF-gene interactions by integrating open chromatin data such as ATAC-Seq or H3K27ac with RNA-seq across a set of samples (e.g. individuals), and optionally also Hi-C data. GRaNPA is a general framework for evaluating the biological relevance of TF-gene GRNs by assessing their performance for predicting cell-type specific differential expression. We demonstrate the power of our tool-suite by investigating gene regulatory mechanisms in macrophages that underlie their response to infection and cancer, their involvement in common genetic diseases including autoimmune diseases, and identify the TF PURA as putative regulator of pro-inflammatory macrophage polarisation. Availability - GRaNIE: https://bioconductor.org/packages/release/bioc/html/GRaNIE.html - GRaNPA: https://git.embl.de/grp-zaugg/GRaNPA Graphical abstract
1
Citation12
0
Save
12

Nuclear receptor subfamily 4A signaling as a key disease pathway of CD1c+ dendritic cell dysregulation in systemic sclerosis

Nila Servaas et al.Nov 9, 2021
ABSTRACT Objectives To identify key disease pathways driving conventional dendritic cell (cDC) alterations in Systemic Sclerosis (SSc). Methods Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 SSc patients with all major disease subtypes. Differential expression analysis comparing the different SSc subtypes and healthy donors was performed to uncover genes dysregulated in SSc. To identify biologically relevant pathways, a gene co-expression network was built using Weighted Gene Correlation Network Analysis. We validated the role of key transcriptional regulators using ChIP-sequencing and in vitro functional assays. Results We identified 17 modules of co-expressed genes in cDC2s that correlated with SSc subtypes and key clinical traits including auto-antibodies, skin score, and occurrence of interstitial lung disease. A module of immune regulatory genes was markedly down regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted NR4A (nuclear receptor 4A) subfamily ( NR4A1, NR4A2, NR4A3 ) genes as the key transcriptional mediators of inflammation. Indeed, ChIP-sequencing analysis supported that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T-cell activation. Conclusions NR4A1, NR4A2 and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDC2s. Thus, the NR4A family represent novel potential targets to restore cDC homeostasis in SSc. KEY MESSAGES What is already known about this subject? CD1c+ conventional dendritic cells (cDC2s) are implicated as key players in Systemic Sclerosis (SSc), but key molecular mechanisms underlying their dysregulation were unknown. What does this study add? Transcriptomic analysis and network analysis identified modules of coexpressed genes in cDC2s that correlated with SSc subtypes and key clinical traits. The NR4A (nuclear receptor 4A) subfamily ( NR4A1, NR4A2, NR4A3 ) genes act as master regulators of key immune regulatory genes dysregulated in SSc cDC2s, as shown by multi-omics integration analysis using transcriptomics and targeted ChIP-sequencing. Pharmacological activation of NR4As inhibits pro-inflammatory cytokine production and CD4+ T-cell activation by cDC2s. How might this impact on clinical practice or future developments? NR4As are attractive candidates for novel treatment options to attenuate pro-inflammatory and pro-fibrotic responses in SSc patients.
12
Citation1
0
Save
0

Escape from X inactivation is directly modulated by levels of Xist non-coding RNA

Antonia Hauth et al.Feb 24, 2024
ABSTRACT In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist 1 . Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo , in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist’s XCI initiation partner, SPEN 2 . We further demonstrate that Xist’s function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.
0
Citation1
0
Save
0

Scalable ultra-high-throughput single-cell chromatin and RNA sequencing reveals gene regulatory dynamics linking macrophage polarization to autoimmune disease

Sara Lobato-Moreno et al.Dec 26, 2023
Enhancers and transcription factors (TFs) are crucial in regulating cellular processes, including disease-associated cell states. Current multiomic technologies to study these elements in gene regulatory mechanisms lack multiplexing capability and scalability. Here, we present SUM-seq, a cost-effective, scalable Single-cell Ultra-high-throughput Multiomic sequencing method for co-assaying chromatin accessibility and gene expression in single nuclei. SUM-seq enables profiling hundreds of samples at the million cell scale and outperforms current high-throughput single-cell methods. We applied SUM-seq to dissect the gene regulatory mechanisms governing macrophage polarization and explored their link to traits from genome-wide association studies (GWAS). Our analyses confirmed known TFs orchestrating M1 and M2 macrophage programs, unveiled key regulators, and demonstrated extensive enhancer rewiring. Integration with GWAS data further pinpointed the impact of specific TFs on a set of immune traits. Notably, inferred enhancers regulated by the STAT1/STAT2/IRF9 (ISGF3) complex were enriched for genetic variants associated with Crohn's disease, ulcerative colitis and multiple sclerosis, and their target genes included known drug targets. This highlights the potential of SUM-seq for dissecting molecular disease mechanisms. SUM-seq offers a cost-effective, scalable solution for ultra-high-throughput single-cell multiomic sequencing, excelling in unraveling complex gene regulatory networks in cell differentiation, responses to perturbations, and disease studies.
1

Compartmentalization and persistence of dominant (regulatory) T cell clones indicates antigen skewing in juvenile idiopathic arthritis

Gerdien Mijnheer et al.Feb 10, 2022
ABSTRACT Autoimmune inflammation is characterized by tissue infiltration and expansion of antigen-specific T cells. Although this inflammation is often limited to specific target tissues, it remains yet to be explored whether distinct affected sites are infiltrated with the same, persistent T cell clones. Here we performed CyTOF analysis and T cell receptor (TCR) sequencing to study immune cell composition and (hyper-)expansion of circulating and joint-derived Tregs and non-Tregs in Juvenile Idiopathic Arthritis (JIA). We studied different joints affected at the same time, as well as over the course of relapsing-remitting disease. We found that the composition and functional characteristics of immune infiltrates are strikingly similar between joints within one patient, and observed a strong overlap between dominant T cell clones, especially Treg, of which some could also be detected in circulation and persisted over the course of relapsing remitting disease. Moreover, these T cell clones were characterized by a high degree of sequence similarity, indicating the presence of TCR clusters responding to the same antigens. These data suggest that in localized autoimmune disease there is auto-antigen driven expansion of both Teffector and Treg clones, that are highly persistent and are (re)circulating. These dominant clones might represent interesting therapeutic targets.
1

Transcriptome network analysis implicates CX3CR1-positive type 3 dendritic cells in non-infectious uveitis

Sanne Hiddingh et al.Nov 19, 2021
ABSTRACT Background Type I interferons (IFNs) promote the expansion of subsets of CD1c+ conventional dendritic cells (CD1c+ DCs), but the molecular basis of CD1c+ DCs involvement in conditions not associated without elevated type I IFNs remains unclear. Methods We analyzed CD1c+ DCs from two cohorts of non-infectious uveitis patients and healthy donors using RNA-sequencing followed by high-dimensional flow cytometry to characterize the CD1c+ DC populations. Results We report that the CD1c+ DCs pool from patients with non-infectious uveitis is skewed towards a gene module with the chemokine receptor CX3CR1 as the key hub gene. We confirmed these results in an independent case-control cohort and show that the disease-associated gene module is not mediated by type I IFNs. An analysis of peripheral blood using flow cytometry revealed that CX3CR1+ DC3s were diminished, whereas CX3CR1-DC3s were not. Stimulated CX3CR1+ DC3s secrete high levels of inflammatory cytokines, including TNF-alpha, and CX3CR1+ DC3-like cells can be detected in inflamed eyes of patients. Conclusions These results show that CX3CR1+ DC3s are implicated in non-infectious uveitis and can secrete proinflammatory mediators implicated in its pathophysiology. Funding The presented work is supported by UitZicht (project number #2014-4, #2019-10, an #2021-4). The funders had no role in the design, execution, interpretation, or writing of the study.