MM
Marisela Morales
Author with expertise in Neurobiological Mechanisms of Drug Addiction and Depression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(79% Open Access)
Cited by:
2,946
h-index:
69
/
i10-index:
131
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat

Huiling Wang et al.Jan 1, 2009
Abstract The pedunculopontine tegmental nucleus (PPTg) and laterodorsal tegmental nucleus (LDTg) provide cholinergic afferents to several brain areas. This cholinergic complex has been suggested to play a role in sleep, waking, motor function, learning and reward. To have a better understanding of the neurochemical organization of the PPTg/LDTg we characterized the phenotype of PPTg/LDTg neurons by determining in these cells the expression of transcripts encoding choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD) or the vesicular glutamate transporters (vGluT1, vGluT2 and vGluT3). Within the PPTg/LDTg complex we found neurons expressing ChAT, vGluT2 or GAD transcripts, these neuronal phenotypes were intermingled, but not homogeneously distributed within the PPTg or LDTg. Previous studies suggested the presence of either glutamate or γ‐aminobutyric acid (GABA) immunolabeling in a large number of PPTg/LDTg cholinergic neurons, leading to the widespread notion that PPTg/LDTg cholinergic neurons co‐release acetylcholine together with either glutamate or GABA. To assess the glutamatergic or GABAergic nature of the PPTg/LDTg cholinergic neurons, we combined in situ hybridization (to detect vGluT2 or GAD transcripts) and immunohistochemistry (to detect ChAT), and found that over 95% of all PPTg/LDTg cholinergic neurons lack transcripts encoding either vGluT2 mRNA or GAD mRNA. As the vast majority of PPTg/LDTg cholinergic neurons lack transcripts encoding essential proteins for the vesicular transport of glutamate or for the synthesis of GABA, co‐release of acetylcholine with either glutamate or GABA is unlikely to be a major factor in the interactions between acetylcholine, glutamate and GABA at the postsynaptic site.
0

Glutamatergic neurons are present in the rat ventral tegmental area

Tsuyoshi Yamaguchi et al.Jan 1, 2007
Abstract The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or γ‐amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro‐caudal and medio‐lateral aspects of the VTA, with the highest concentration detected in rostro‐medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co–expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non‐DAergic and non‐GABAergic.
0

Single rodent mesohabenular axons release glutamate and GABA

David Root et al.Sep 21, 2014
The ventral tegmental area (VTA) and lateral habenula (LHb) are reciprocally connected. Here the authors show, using electron microscopy, tract tracing and optogenetics in rodents, that the majority of VTA neurons innervating LHb release both GABA and glutamate at the same synaptic terminals. The lateral habenula (LHb) is involved in reward, aversion, addiction and depression through descending interactions with several brain structures, including the ventral tegmental area (VTA). The VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb coexpress markers for both glutamate signaling (vesicular glutamate transporter 2; VGluT2) and GABA signaling (glutamic acid decarboxylase; GAD, and vesicular GABA transporter; VGaT). A single axon from these mesohabenular neurons coexpresses VGluT2 protein and VGaT protein and, surprisingly, establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin2 driven by VGluT2 (Slc17a6) or VGaT (Slc32a1) promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that cotransmits glutamate and GABA and provides the majority of mesohabenular inputs.
0

Mesocorticolimbic Glutamatergic Pathway

Tsuyoshi Yamaguchi et al.Jun 8, 2011
The mesocorticolimbic dopamine (DA) system plays important roles in reward, motivation, learning, memory, and movement. This system arises from the A10 region, comprising the ventral tegmental area and three adjacent midline nuclei (caudal linear nucleus, interfascicular nucleus, and rostral linear nucleus of the raphe). DAergic and GABAergic neurons are intermingled in this region with recently discovered glutamatergic neurons expressing the vesicular glutamate transporter 2 (VGluT2). Here, we show by in situ hybridization and immunohistochemistry that there are two subpopulations of neurons expressing VGluT2 mRNA in the A10 region: (1) a major subpopulation that expresses VGluT2 but lacks tyrosine hydroxylase (TH; VGluT2-only neurons), present in each nucleus of the A10 region, and (2) a smaller subpopulation that coexpresses VGluT2 and TH (VGluT2-TH neurons). By quantitative real-time PCR, we determined the mRNA copy numbers encoding VGluT2 or TH in samples of individual microdissected TH immunoreactive (IR) neurons. Data from both in situ hybridization and from mRNA quantification showed that VGluT2 mRNA is not present in every TH-IR neuron, but restricted to a subset of TH-IR neurons located in the medial portion of the A10 region. By integration of tract tracing, in situ hybridization, and immunohistochemistry, we found that VGluT2-only neurons and VGluT2-TH neurons each innervate both the prefrontal cortex and the nucleus accumbens. These findings establish that in addition to the well-recognized mesocorticolimbic DA-only and GABA-only pathways, there exist parallel mesocorticolimbic glutamate-only and glutamate-DA pathways.
0
Citation314
0
Save
0

Volitional social interaction prevents drug addiction in rat models

Marco Vènniro et al.Oct 11, 2018
Addiction treatment has not been appreciably improved by neuroscientific research. One problem is that mechanistic studies using rodent models do not incorporate volitional social factors, which play a critical role in human addiction. Here, using rats, we introduce an operant model of choice between drugs and social interaction. Independent of sex, drug class, drug dose, training conditions, abstinence duration, social housing, or addiction score in Diagnostic & Statistical Manual IV-based and intermittent access models, operant social reward prevented drug self-administration. This protection was lessened by delay or punishment of the social reward but neither measure was correlated with the addiction score. Social-choice-induced abstinence also prevented incubation of methamphetamine craving. This protective effect was associated with activation of central amygdala PKCδ-expressing inhibitory neurons and inhibition of anterior insular cortex activity. These findings highlight the need for incorporating social factors into neuroscience-based addiction research and support the wider implantation of socially based addiction treatments. Venniro et al. report that drug-addicted rats reliably choose contact with another rat over drugs, even when group-housed between tests. They also do not show the increase in drug craving that normally occurs during forced abstinence.
0

Discharge Profiles across the Sleep–Waking Cycle of Identified Cholinergic, GABAergic, and Glutamatergic Neurons in the Pontomesencephalic Tegmentum of the Rat

Soufiane Boucetta et al.Mar 26, 2014
Distributed within the laterodorsal tegmental and pedunculopontine tegmental nuclei (LDT and PPT), cholinergic neurons in the pontomesencephalic tegmentum have long been thought to play a critical role in stimulating cortical activation during waking (W) and paradoxical sleep (PS, also called REM sleep), yet also in promoting PS with muscle atonia. However, the discharge profile and thus precise roles of the cholinergic neurons have remained uncertain because they lie intermingled with GABAergic and glutamatergic neurons, which might also assume these roles. By applying juxtacellular recording and labeling in naturally sleeping–waking, head-fixed rats, we investigated the discharge profiles of histochemically identified cholinergic, GABAergic, and glutamatergic neurons in the LDT, SubLDT, and adjoining medial part of the PPT (MPPT) in relation to sleep–wake states, cortical activity, and muscle tone. We found that all cholinergic neurons were maximally active during W and PS in positive correlation with fast (γ) cortical activity, as “W/PS-max active neurons.” Like cholinergic neurons, many GABAergic and glutamatergic neurons were also “W/PS-max active.” Other GABAergic and glutamatergic neurons were “PS-max active,” being minimally active during W and maximally active during PS in negative correlation with muscle tone. Conversely, some glutamatergic neurons were “W-max active,” being maximally active during W and minimally active during PS in positive correlation with muscle tone. Through different discharge profiles, the cholinergic, GABAergic, and glutamatergic neurons of the LDT, SubLDT, and MPPT thus appear to play distinct roles in promoting W and PS with cortical activation, PS with muscle atonia, or W with muscle tone.
0

Glutamatergic and Nonglutamatergic Neurons of the Ventral Tegmental Area Establish Local Synaptic Contacts with Dopaminergic and Nondopaminergic Neurons

Alice Dobi et al.Jan 6, 2010
The ventral tegmental area (VTA) contributes to reward and motivation signaling. In addition to the well established populations of dopamine (DA) or GABA VTA neurons, glutamatergic neurons were recently discovered in the VTA. These glutamatergic neurons express the vesicular glutamate transporter 2, VGluT2. To investigate whether VTA glutamatergic neurons establish local synapses, we tagged axon terminals from resident VTA neurons by intra-VTA injection of Phaseolus vulgaris leucoagglutinin (PHA-L) or an adeno-associated virus encoding wheat germ agglutinin (WGA) and by immunoelectron microscopy determined the presence of VGluT2 in PHA-L- or WGA-positive terminals. We found that PHA-L- or WGA-positive terminals from tagged VTA cells made asymmetric or symmetric synapses within the VTA. VGluT2 immunoreactivity was detected in the vast majority of PHA-L- or WGA-positive terminals forming asymmetric synapses. These results indicate that both VTA glutamatergic and nonglutamatergic (likely GABAergic) neurons establish local synapses. To examine the possible DAergic nature of postsynaptic targets of VTA glutamatergic neurons, we did triple immunolabeling with antibodies against VGluT2, tyrosine hydroxylase (TH), and PHA-L. From triple-labeled tissue, we found that double-labeled PHA-L (+)/VGluT2 (+) axon terminals formed synaptic contacts on dendrites of both TH-positive and TH-negative cells. Consistent with these anatomical observations, in whole-cell slice recordings of VTA neurons we observed that blocking action potential activity significantly decreased the frequency of synaptic glutamatergic events in DAergic and non-DAergic neurons. These observations indicate that resident VTA glutamatergic neurons are likely to affect both DAergic and non-DAergic neurotransmission arising from the VTA.
0

Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons

Shiliang Zhang et al.Feb 9, 2015
Dopamine axons projecting from the ventral tegmental area to the nucleus accumbens (mesoaccumbens axons) play a role in motivation. Tthe authors show that there are distinct microdomains releasing either dopamine or glutamate within individual mesoaccumbens axons in rats and mice. Mesoaccumbens fibers are thought to co-release dopamine and glutamate. However, the mechanism is unclear, and co-release by mesoaccumbens fibers has not been documented. Using electron microcopy, we found that some mesoaccumbens fibers have vesicular transporters for dopamine (VMAT2) in axon segments that are continuous with axon terminals that lack VMAT2, but contain vesicular glutamate transporters type 2 (VGluT2). In vivo overexpression of VMAT2 did not change the segregation of the two vesicular types, suggesting the existence of highly regulated mechanisms for maintaining this segregation. The mesoaccumbens axon terminals containing VGluT2 vesicles make asymmetric synapses, commonly associated with excitatory signaling. Using optogenetics, we found that dopamine and glutamate were released from the same mesoaccumbens fibers. These findings reveal a complex type of signaling by mesoaccumbens fibers in which dopamine and glutamate can be released from the same axons, but are not normally released at the same site or from the same synaptic vesicles.
36

Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor

Armando Salinas et al.Jan 11, 2022
Abstract Dopamine produces neuromodulation throughout the basal ganglia, cortex and other brain regions, and is implicated in movement control, neural mechanisms of reward and actions of misused substances. The efferent projections of dopaminergic neurons with somata in the substantia nigra pars compacta and ventral tegmental area strongly innervate different striatal subregions. While much is known about the function of these neurons, there is a relative deficiency of information about in vivo dopamine dynamics in the nigrostriatal projections, especially those to the dorsolateral striatum (DLS). In past studies, subsecond dopamine changes were measured predominantly with fast-scan cyclic voltammetry (FSCV) both in brain slices and in vivo . However, traditional FSCV has limitations in discriminating among catecholamines, and cannot be used for simultaneous measurement of both slow and fast/phasic dopamine changes. In addition, FSCV has been most useful for measuring dopamine in the ventral striatum in vivo with less utility for measurement in dorsolateral striatum. The development of genetically encoded dopamine sensors has provided a new approach to measuring slow and fast dopamine dynamics both in brain slices and in vivo , raising the hope of more facile measurement of in vivo dopamine measurements, including in areas where measurement was previously difficult with FSCV. To this end, we first evaluated dLight photometry in brain slices with simultaneous FSCV. We found that both techniques yielded comparable findings. However, differences were noted in responses to dopamine transporter inhibitors, including cocaine. We then used in vivo fiber photometry with dLight to examine responses to cocaine in DLS and compared responses during Pavlovian conditioning in DLS to two other striatal subregions. These experiments show that dopamine increases are readily detectable in DLS and provide new information about dopamine transient kinetics and slowly developing signaling during conditioning. Overall, our findings indicate that dLight photometry is well suited to measuring dopamine dynamics in a striatal region of great interest where such measurements were difficult previously.
36
Citation7
0
Save
Load More