SI
Shun Ishibashi
Author with expertise in Cholesterol Metabolism and Atherosclerosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(80% Open Access)
Cited by:
7,474
h-index:
77
/
i10-index:
260
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice.

Shun Ishibashi et al.May 1, 1994
Mice that are homozygous for a targeted disruption of the LDL receptor gene (LDLR-/- mice) were fed a diet that contained 1.25% cholesterol, 7.5% cocoa butter, 7.5% casein, and 0.5% cholic acid. The total plasma cholesterol rose from 246 to > 1,500 mg/dl, associated with a marked increase in VLDL, intermediate density lipoproteins (IDL), and LDL cholesterol, and a decrease in HDL cholesterol. In wild type littermates fed the same diet, the total plasma cholesterol remained < 160 mg/dl. After 7 mo, the LDLR-/- mice developed massive xanthomatous infiltration of the skin and subcutaneous tissue. The aorta and coronary ostia exhibited gross atheromata, and the aortic valve leaflets were thickened by cholesterol-laden macrophages. No such changes were seen in the LDLR-/- mice on a normal chow diet, nor in wild type mice that were fed either a chow diet or the high-fat diet. We conclude that LDL receptors are largely responsible for the resistance of wild type mice to atherosclerosis. The cholesterol-fed LDLR-/- mice offer a new model for the study of environmental and genetic factors that modify the processes of atherosclerosis and xanthomatosis.
0

Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017

Makoto Kinoshita et al.Aug 21, 2018
Revisions 1. CQs and Systematic Review (SR)In the subsections on dyslipidemia in the assessment of risk factors, absolute risk of ASCVD, lipid management targets as well as drug therapy and diet therapy in improving lifestyle habits, we created CQs and performed an SR based on the MINDS method.For our SR, we essentially chose the literature published before the end of 2015. Calculation of Absolute RiskFollowing the 2012 version, the assessment of risk has been performed using the absolute risk calculation described in this set of guidelines.The NIPPON DATA80, which was used to calculate the absolute risk in the 2012 version, was the result of baseline surveys conducted when statins were not available.It is suited to the observation of the natural course of disease, and the data are highly useful; however, using death instead of disease onset as the outcome and the absence of information on LDL-C and HDL-C are major issues, in addition to some others.SR indicated that the Suita study, which used CAD as its outcome, is most suitable for risk calculation in this set of guidelines.We believe that the determination of the incidence rate of CAD instead of the overall risk assessment has enabled a clearer demonstration of the importance of each risk.Classification of Evidence Levels of Epidemiological Studies E-Ia: Meta-analysis of cohort studies E-Ib: Cohort studies E-II: Case-control studies and cross-sectional studies E-III: Descriptive studies (case series) Recommendation Levels A Strong recommendation B Weak recommendation Recommendations made according to consensus are indicated by the word "consensus.
0

Sterol Regulatory Element-binding Protein-1 as a Key Transcription Factor for Nutritional Induction of Lipogenic Enzyme Genes

Hitoshi Shimano et al.Dec 1, 1999
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type andSREBP-1 −/− mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished inSREBP-1 −/− mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refedSREBP-1 −/− livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1 −/− mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.
0

Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity

Jun-ichi Osuga et al.Jan 18, 2000
Hormone-sensitive lipase (HSL) is known to mediate the hydrolysis not only of triacylglycerol stored in adipose tissue but also of cholesterol esters in the adrenals, ovaries, testes, and macrophages. To elucidate its precise role in the development of obesity and steroidogenesis, we generated HSL knockout mice by homologous recombination in embryonic stem cells. Mice homozygous for the mutant HSL allele (HSL−/−) were superficially normal except that the males were sterile because of oligospermia. HSL−/− mice did not have hypogonadism or adrenal insufficiency. Instead, the testes completely lacked neutral cholesterol ester hydrolase (NCEH) activities and contained increased amounts of cholesterol ester. Many epithelial cells in the seminiferous tubules were vacuolated. NCEH activities were completely absent from both brown adipose tissue (BAT) and white adipose tissue (WAT) in HSL−/− mice. Consistently, adipocytes were significantly enlarged in the BAT (5-fold) and, to a lesser extent in the WAT (2-fold), supporting the concept that the hydrolysis of triacylglycerol was, at least in part, impaired in HSL−/− mice. The BAT mass was increased by 1.65-fold, but the WAT mass remained unchanged. Discrepancy of the size differences between cell and tissue suggests the heterogeneity of adipocytes. Despite these morphological changes, HSL−/− mice were neither obese nor cold sensitive. Furthermore, WAT from HSL−/− mice retained 40% of triacylglycerol lipase activities compared with the wild-type WAT. In conclusion, HSL is required for spermatogenesis but is not the only enzyme that mediates the hydrolysis of triacylglycerol stored in adipocytes.
0

Identification of Liver X Receptor-Retinoid X Receptor as an Activator of the Sterol Regulatory Element-Binding Protein 1c Gene Promoter

Tomohiro Yoshikawa et al.May 1, 2001
AbstractIn an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXRα) and LXRβ as strong activators of the mouse SREBP-1c promoter. In the transfection studies, expression of either LXRα or -β activated the SREBP-1c promoter-luciferase gene in a dose-dependent manner. Deletion and mutation studies, as well as gel mobility shift assays, located an LXR response element complex consisting of two new LXR-binding motifs which showed high similarity to an LXR response element recently found in the ABC1 gene promoter, a reverse cholesterol transporter. Addition of an LXR ligand, 22(R)-hydroxycholesterol, increased the promoter activity. Coexpression of retinoid X receptor (RXR), a heterodimeric partner, and its ligand 9-cis-retinoic acid also synergistically activated the SREBP-1c promoter. In HepG2 cells, SREBP-1c mRNA and precursor protein levels were induced by treatment with 22(R)-hydroxycholesterol and 9-cis-retinoic acid, confirming that endogenous LXR-RXR activation can induce endogenous SREBP-1c expression. The activation of SREBP-1c by LXR is associated with a slight increase in nuclear SREBP-1c, resulting in activation of the gene for fatty acid synthase, one of its downstream genes, as measured by the luciferase assay. These data demonstrate that LXR-RXR can modify the expression of genes for lipogenic enzymes by regulating SREBP-1c expression, providing a novel link between fatty acid and cholesterol metabolism. ACKNOWLEDGMENTSWe thank N. Emoto and A. Amemiya for great help in construction of the expression library.This study was supported by the Promotion of Fundamental Studies in Health Science of the Organization for Pharmaceutical Safety and Research and health sciences research grants (Research on Human Genome and Gene Therapy) from the Ministry of Health and Welfare.ADDENDUMDuring the manuscript review process, activation of SREBP-1c expression by LXRs was reported in studies using a pharmacological LXR agonist as well as mice deficient in LXRα, LXRβ, or both (Citation25a, Citation28a). The researchers also studied the SREBP-1c promoter and found one of the LXREs that we identified in the current study. Their data, from a different approach to LXRs, and our present SREBP-1c promoter analysis data are basically consistent and confirm each other.
0

The two-receptor model of lipoprotein clearance: tests of the hypothesis in "knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins.

Shun Ishibashi et al.May 10, 1994
Apolipoprotein E (apoE) is hypothesized to mediate lipoprotein clearance by binding to two receptors: (i) the low density lipoprotein receptor (LDLR) and (ii) a chylomicron remnant receptor. To test this hypothesis, we have compared plasma lipoproteins in mice that are homozygous for targeted disruptions of the genes for apoE [apoE(-/-)], the LDLR [LDLR(-/-)], and both molecules [poE(-/-); LDLR(-/-)]. On a normal chow diet, apoE(-/-) mice had higher mean plasma cholesterol levels than LDLR(-/-) mice (579 vs. 268 mg/dl). Cholesterol levels in the apoE(-/-); LDLR(-/-) mice were not significantly different from those in the apoE(-/-) mice. LDLR(-/-) mice had a relatively isolated elevation in plasma LDL, whereas apoE(-/-) mice had a marked increase in larger lipoproteins corresponding to very low density lipoproteins and chylomicron remnants. The lipoprotein pattern in apoE(-/-); LDLR(-/-) mice resembled that of apoE(-/-) mice. The LDLR(-/-) mice had a marked elevation in apoB-100 and a modest increase in apoB-48. In contrast, the apoE(-/-) mice had a marked elevation in apoB-48 but not in apoB-100. The LDLR(-/-); apoE(-/-) double homozygotes had marked elevations of both apolipoproteins. The observation that apoB-48 increases more dramatically with apoE deficiency than with LDLR deficiency supports the notion that apoE binds to a second receptor in addition to the LDLR. This conclusion is also supported by the observation that superimposition of a LDLR deficiency onto an apoE deficiency [apoE(-/-); LDLR(-/-) double homozygotes] does not increase hypercholesterolemia beyond the level observed with apoE deficiency alone.
0

Polyunsaturated Fatty Acids Suppress Sterol Regulatory Element-binding Protein 1c Promoter Activity by Inhibition of Liver X Receptor (LXR) Binding to LXR Response Elements

Tomohiro Yoshikawa et al.Jan 1, 2002
Previous studies have demonstrated that polyunsaturated fatty acids (PUFAs) suppress sterol regulatory element-binding protein 1c (SREBP-1c) expression and, thus, lipogenesis. In the current study, the molecular mechanism for this suppressive effect was investigated with luciferase reporter gene assays using the SREBP-1c promoter in HEK293 cells. Consistent with previous data, the addition of PUFAs to the medium in the assays robustly inhibited the SREBP-1c promoter activity. Deletion and mutation of the two liver X receptor (LXR)-responsive elements (LXREs) in the SREBP-1c promoter region eliminated this suppressive effect, indicating that both LXREs are important PUFA-suppressive elements. The luciferase activities of both SREBP-1c promoter and LXRE enhancer constructs induced by co-expression of LXRalpha or -beta were strongly suppressed by the addition of various PUFAs (arachidonic acid > eicosapentaenoic acid > docosahexaenoic acid > linoleic acid), whereas saturated or mono-unsaturated fatty acids had minimal effects. Gel shift mobility and ligand binding domain activation assays demonstrated that PUFA suppression of SREBP-1c expression is mediated through its competition with LXR ligand in the activation of the ligand binding domain of LXR, thereby inhibiting binding of LXR/retinoid X receptor heterodimer to the LXREs in the SREBP-1c promoter. These data suggest that PUFAs could be deeply involved in nutritional regulation of cellular fatty acid levels by inhibiting an LXR-SREBP-1c system crucial for lipogenesis.
Load More