A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
BC
Benoît Coste
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
3,358
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Thalamic control of sensory enhancement and sleep spindle properties in a biophysical model of thalamoreticular microcircuitry

Elisabetta Iavarone et al.Mar 2, 2022
Abstract Thalamoreticular circuitry is known to play a key role in attention, cognition and the generation of sleep spindles, and is implicated in numerous brain disorders, but the cellular and synaptic mechanisms remain intractable. Therefore, we developed the first detailed computational model of mouse thalamus and thalamic reticular nucleus microcircuitry that captures morphological and biophysical properties of âˆ¼14,000 neurons connected via âˆ¼6M synapses, and recreates biological synaptic and gap junction connectivity. Simulations recapitulate multiple independent network-level experimental findings across different brain states, providing a novel unifying cellular and synaptic account of spontaneous and evoked activity in both wakefulness and sleep. Furthermore, we found that: 1.) inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness, in addition to its role in spindle generation; 2.) thalamic interactions generate the characteristic waxing and waning of spindle oscillations; and 3.) changes in thalamic excitability (e.g. due to neuromodulation) control spindle frequency and occurrence. The model is openly available and provides a new tool to interpret spindle oscillations and test hypotheses of thalamoreticular circuit function and dysfunction across different network states in health and disease.
0

Computational synthesis of cortical dendritic morphologies

Lida Kanari et al.Apr 17, 2020
Neuronal morphologies provide the foundation for the electrical behavior of neurons, the connectomes they form, and the dynamical properties of the brain. Comprehensive neuron models are essential for defining cell types, discerning their functional roles and investigating structural alterations associated with diseased brain states. Recently, we introduced a topological descriptor that reliably categorizes dendritic morphologies. We apply this descriptor to digitally synthesize dendrites to address the challenge of insufficient biological reconstructions. The synthesized cortical dendrites are statistically indistinguishable from the corresponding reconstructed dendrites in terms of morpho-electrical properties and connectivity. This topology-guided synthesis enables the rapid digital reconstruction of entire brain regions from relatively few reference cells, thereby allowing the investigation of links between neuronal morphologies and brain function across different spatio-temporal scales. We synthesized cortical networks based on structural alterations of dendrites associated with medical conditions and revealed principles linking branching properties to the structure of large-scale networks.### Competing Interest StatementThe authors have declared no competing interest.
16

The structure of the brain - including neurons, supportive cells, and vasculature

Eleftherios Zisis et al.Jan 1, 2021
Astrocytes connect the vasculature to neurons and mediate the supply of nutrients and biochemicals. They also remove metabolites from the neurons and extracellular environment. They are involved in a growing number of physiological and pathophysiological processes. Understanding the biophysical, physiological, and molecular interactions in this neuro-glia-vascular ensemble (NGV) and how they support brain function is severely restricted by the lack of detailed cytoarchitecture. To address this problem, we used data from multiple sources to create a data-driven digital reconstruction of the NGV at micrometer anatomical resolution. We reconstructed 0.2 mm3 of rat somatosensory cortical tissue with approximately 16000 morphologically detailed neurons, its microvasculature, and approximately 2500 morphologically detailed protoplasmic astrocytes. The consistency of the reconstruction with a wide array of experimental measurements allows novel predictions of the numbers and locations of astrocytes and astrocytic processes that support different types of neurons. This allows anatomical reconstruction of the spatial microdomains of astrocytes and their overlapping regions. The number and locations of end-feet connecting each astrocyte to the vasculature can be determined as well as the extent to which they cover the microvasculature. The structural analysis of the NGV circuit showed that astrocytic shape and numbers are constrained by vasculature's spatial occupancy and their functional role to form NGV connections. The digital reconstruction of the NGV is a resource that will enable a better understanding of the anatomical principles and geometric constraints which govern how astrocytes support brain function.