HW
Helen Wang
Author with expertise in Acute Myeloid Leukemia
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
9
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Multiomic single-cell lineage tracing to dissect fate-specific gene regulatory programs

Kunal Jindal et al.Oct 24, 2022
Abstract Complex gene regulatory mechanisms underlie differentiation and reprogramming. Contemporary single-cell lineage tracing (scLT) methods use expressed, heritable DNA barcodes to combine cell lineage readout with single-cell transcriptomics enabling high-resolution analysis of cell states while preserving lineage relationships. However, reliance on transcriptional profiling limits their adaptation to an ever-expanding tool kit of multiomic single-cell assays. With CellTag-multi, we present a novel approach for independently profiling lineage barcodes with single-cell chromatin accessibility without relying on co-assay of transcriptional state, paving the way for truly multiomic lineage tracing. We validate CellTag-multi in mouse hematopoiesis, characterizing transcriptional and epigenomic lineage priming across progenitor cell populations. In direct reprogramming of fibroblasts to endoderm progenitors, we use CellTag-multi to comprehensively link early cell state with reprogramming outcomes, identifying core regulatory programs underlying on-target and off-target reprogramming. Further, we reveal the Transcription Factor (TF) Zfp281 as a novel regulator of reprogramming outcome, biasing cells towards an off-target mesenchymal fate via its regulation of TGF-β signaling. Together, these results establish CellTag-multi as a novel lineage tracing method compatible with multiple single-cell modalities and demonstrate its utility in revealing fate-specifying gene regulatory changes across diverse paradigms of differentiation and reprogramming.
1
Citation9
0
Save
5

Basal type I interferon signaling has only modest effects on neonatal and juvenile hematopoiesis

Yanan Li et al.Jul 18, 2022
ABSTRACT Type I interferon (IFN-1) regulates gene expression and hematopoiesis both during development and in response to inflammatory stress. We previously showed that during development, hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) induce IFN-1 target genes shortly before birth in mice. This coincides with the onset of a transition to adult hematopoiesis, and it drives expression of genes associated with antigen presentation. However, it is not clear whether perinatal IFN-1 modulates hematopoietic output, as has been observed in contexts of inflammation. We have characterized hematopoiesis at several different stages of blood formation, from HSCs to mature blood cells, and found that loss of the IFN-1 receptor (IFNAR1) leads to depletion of several phenotypic HSC and MPP subpopulations in neonatal and juvenile mice. Committed lymphoid and myeloid progenitor populations simultaneously expand. These changes had surprisingly little effect on production of more differentiated blood cells. Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) resolved the discrepancy between the extensive changes in progenitor numbers and modest changes in hematopoiesis, revealing stability in most MPP populations in Ifnar1 -deficient neonates when the populations were identified based on gene expression rather than surface marker phenotype. Thus, basal IFN-1 signaling has only modest effects on hematopoiesis. Discordance between transcriptionally- and phenotypically-defined MPP populations may impact interpretations of how IFN-1 shapes hematopoiesis in other contexts, such as aging or inflammation. KEY POINTS Loss of type I Interferon signaling in neonatal mice depletes immature blood progenitors without compromising postnatal hematopoiesis Progenitor populations remain intact when measured by single cell transcriptomes rather than surface marker phenotypes