CD
Carolina D’Andrea
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
9
h-index:
5
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

A mind-body interface alternates with effector-specific regions in motor cortex

Evan Gordon et al.Oct 28, 2022
+43
A
R
E
SUMMARY Primary motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down precentral gyrus from foot to face representations 1,2 . The motor homunculus has remained a textbook pillar of functional neuroanatomy, despite evidence for concentric functional zones 3 and maps of complex actions 4 . Using our highest precision functional magnetic resonance imaging (fMRI) data and methods, we discovered that the classic homunculus is interrupted by regions with sharpy distinct connectivity, structure, and function, alternating with effector-specific (foot, hand, mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, and to prefrontal, insular, and subcortical regions of the Cingulo-opercular network (CON), critical for executive action 5 and physiological control 6 , arousal 7 , and processing of errors 8 and pain 9 . This interdigitation of action control-linked and motor effector regions was independently verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant, child) precision fMRI revealed potential cross-species analogues and developmental precursors of the inter-effector system. An extensive battery of motor and action fMRI tasks documented concentric somatotopies for each effector, separated by the CON-linked inter-effector regions. The inter-effector regions lacked movement specificity and co-activated during action planning (coordination of hands and feet), and axial body movement (e.g., abdomen, eyebrows). These results, together with prior work demonstrating stimulation-evoked complex actions 4 and connectivity to internal organs (e.g., adrenal medulla) 10 , suggest that M1 is punctuated by an integrative system for implementing whole-body action plans. Thus, two parallel systems intertwine in motor cortex to form an integrate-isolate pattern: effector-specific regions (foot, hand, mouth) for isolating fine motor control, and a mind-body interface (MBI) for the integrative whole-organism coordination of goals, physiology, and body movement.
2
5.0
Citation9
1
Save
0

Hippocampal volume in Provisional Tic Disorder predicts tic severity at 12-month follow-up

Soyoung Kim et al.Feb 7, 2020
+5
C
D
S
Background Previous studies have investigated differences in the volumes of subcortical structures (e.g., caudate nucleus, putamen, thalamus, amygdala, hippocampus) between individuals with and without Tourette syndrome (TS), as well as the relationships between these volumes and tic symptom severity. These volumes may also predict clinical outcome in Provisional Tic Disorder (PTD), but that hypothesis has never been tested.Objective This study aimed to examine whether the volumes of subcortical structures measured shortly after tic onset can predict tic symptom severity at one year post tic onset, when TS can first be diagnosed.Methods We obtained T1-weighted structural MRI scans from 41 children with PTD (25 with prospective motion correction [vNavs]) whose tics had begun less than 9 months (median 3.7 months) prior to the first study visit (baseline). We re-examined them at the 12-month anniversary of their first tic (follow-up), assessing tic severity using the Yale Global Tic Severity Scale. We quantified the volumes of subcortical structures using volBrain software.Results Baseline hippocampal volume was correlated with tic severity at the 12-month follow-up, with a larger hippocampus at baseline predicting worse tic severity at follow-up. This result was confirmed in the subgroup scanned with prospective motion correction. The volumes of other subcortical structures did not significantly predict tic severity at follow-up.Conclusion These findings suggest that hippocampal volume may be an important marker in predicting prognosis in Provisional Tic Disorder.
7

Substructure of the brain's Cingulo-Opercular network

Carolina D’Andrea et al.Jan 1, 2023
+8
D
S
C
The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographical and functional heterogeneity of the CON, we investigated whether subnetworks within the CON support separable aspects of action control. Using precision functional mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity (RSFC) and task data, we identified three anatomically and functionally distinct CON subnetworks within each individual. These three distinct subnetworks were linked to Decisions, Actions, and Feedback (including pain processing), respectively, in convergence with a meta-analytic task database. These Decision, Action and Feedback subnetworks represent pathways by which the brain establishes top-down goals, transforms those goals into actions, implemented as movements, and processes critical action feedback such as pain.
1

Real-time motion monitoring improves functional MRI data quality in infants

Carolina D’Andrea et al.Nov 11, 2021
+12
D
J
C
Abstract Imaging the infant brain with MRI has improved our understanding of early stages of neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are commonly scanned while asleep, they commonly exhibit motion during scanning, causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Hence, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging.