IM
Ilia Minkin
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
12
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
52

CHESS 3: an improved, comprehensive catalog of human genes and transcripts based on large-scale expression data, phylogenetic analysis, and protein structure

Ales Varabyou et al.Dec 22, 2022
+12
A
C
A
Abstract The original CHESS database of human genes was assembled from nearly 10,000 RNA sequencing experiments in 53 human body sites produced by the Genotype-Tissue Expression (GTEx) project, and then augmented with genes from other databases to yield a comprehensive collection of protein-coding and noncoding transcripts. The construction of the new CHESS 3 database employed improved transcript assembly algorithms, a new machine learning classifier, and protein structure predictions to identify genes and transcripts likely to be functional and to eliminate those that appeared more likely to represent noise. The new catalog contains 41,356 genes on the GRCh38 reference human genome, of which 19,839 are protein-coding, and a total of 158,377 transcripts. These include 14,863 novel protein-coding transcripts. The total number of transcripts is substantially smaller than earlier versions due to improved transcriptome assembly methods and to a stricter protocol for filtering out noisy transcripts. Notably, CHESS 3 contains all of the transcripts in the MANE database, and at least one transcript corresponding to the vast majority of protein-coding genes in the RefSeq and GENCODE databases. CHESS 3 has also been mapped onto the complete CHM13 human genome, which gives a more-complete gene count of 43,773 genes and 19,968 protein-coding genes. The CHESS database is available at http://ccb.jhu.edu/chess .
52
Citation9
0
Save
113

Highly accurate isoform identification for the human transcriptome

Markus Sommer et al.Jun 9, 2022
+6
A
S
M
Abstract We explore a new hypothesis in genome annotation, namely whether computationally predicted protein structures can help to identify which of multiple possible gene isoforms represents a functional protein product. Guided by structure predictions, we evaluated over 140,000 isoforms of human protein-coding genes assembled from over 10,000 RNA sequencing experiments across many human tissues. We illustrate our new method with examples where structure provides a guide to function in combination with expression and evolutionary evidence. Additionally, we provide the complete set of structures as a resource to better understand the function of human genes and their isoforms. These results demonstrate the promise of protein structure prediction as a genome annotation tool, allowing us to refine even the most highly-curated catalog of human proteins. One-Sentence Summary We describe the use of 3D protein structures on a genome-wide scale to evaluate human protein isoforms for biological functionality.
113
Citation3
0
Save
0

Scalable multiple whole-genome alignment and locally collinear block construction with SibeliaZ

Ilia Minkin et al.Feb 13, 2019
P
I
Multiple whole-genome alignment is a fundamental and challenging problems in bioinformatics. Despite many ongoing successes, today's methods are not able to keep up with the growing number, length, and complexity of assembled genomes. Approaches based on using compacted de Bruijn graphs to identify and extend anchors into locally collinear blocks hold the potential for scalability, but current algorithms still do not scale to mammalian genomes. We present a novel algorithm SibeliaZ-LCB for identifying collinear blocks in closely related genomes based on the analysis of the de Bruijn graph. We further incorporate it into a multiple whole-genome alignment pipeline called SibeliaZ. SibeliaZ shows drastic run-time improvements over other methods on both simulated and real data, with only a limited decrease in accuracy. On sixteen recently assembled strains of mice, SibeliaZ runs in under 12 hours, while other tools could not run to completion for even eight mice, given a week. SibeliaZ makes a signicant step towards improving scalability of multiple whole-genome alignment and collinear block reconstruction algorithms and will enable many comparative genomics studies in the near future.
0

Quality assessment of splice site annotation based on conservation across multiple species

Ilia Minkin et al.Jan 1, 2023
S
I
Despite many improvements over the years, the annotation of the human genome remains imperfect, and even the best annotations of the human reference genome sometimes contradict one another. Hence, refinement of the human genome annotation is an important challenge. The use of evolutionarily conserved sequences provides a strategy for addressing this problem, and the rapidly growing number of genomes from other species increases the power of an evolution-driven approach. Using the latest large-scale whole genome alignment data, we found that splice sites from protein-coding genes in the high-quality MANE annotation are consistently conserved across more than 400 species. We also studied splice sites from the RefSeq, GENCODE, and CHESS databases that are not present in MANE, from both protein-coding genes and lncRNAs. We trained a logistic regression classifier to distinguish between the conservation patterns exhibited by splice sites from MANE versus sites that were flanked by the standard GT-AG dinucleotides, but that were chosen randomly from a sequence not under selection. We found that up to 70% of splice sites from annotated protein-coding transcripts outside of MANE exhibit conservation patterns closer to random sequence as opposed to highly-conserved splice sites from MANE. Our study highlights potentially erroneous splice sites that might require further scrutiny.