A bstract Designing de novo binding proteins against arbitrary epitopes using a single scaffold, as seen with natural antibodies, remains an unsolved challenge in protein design. Current design methods are unable to capture the structural dynamics of flexible loops nor search loop conformational space in a principled way. Here we present Sculptor, a deep generative design algorithm that creates epitope-specific protein binders. The Sculptor algorithm constitutes a joint search over the positions, interactions, and generated conformations of a fold, and crafts a backbone to complement a user-specified epitope. Sequences are designed onto generated backbones using a combination of a residue-wise interaction database, a convolutional sequence design module, and Rosetta. Instead of relying on static structures, we capture the local conformational landscape of a single fold using molecular dynamics, and demonstrate that a model trained on such dense conformational data can generate backbones tailor-fit to an epitope. We use Sculptor to design binders against a conserved epitope on venom toxins implicated in neuromuscular paralysis, and obtain a multi-toxin binder from a small naïve library – a promising step towards creating broadly neutralizing binders. This study constitutes a novel application of deep generative modeling for epitope-targeted design, leveraging conformational dynamics to achieve function.