SG
Scott Geib
Author with expertise in Impact of Pollinator Decline on Ecosystems and Agriculture
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(74% Open Access)
Cited by:
582
h-index:
33
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface

Duane McKenna et al.Nov 10, 2016
Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.
0
Citation249
0
Save
7

DNA barcodes and reliable molecular identifications in a diverse group of invasive pests: lessons from Bactrocera fruit flies on variation across the COI gene, introgression, and standardization

Camiel Doorenweerd et al.Nov 23, 2020
Abstract The utility of a universal DNA ‘barcode’ fragment of 658 base pairs of the Cytochrome C Oxidase I (COI) gene for the recognition of all animal species has been a widely debated topic on theoretical and practical levels. Regardless of its challenges, large amounts of COI sequence data have been produced in the last two decades. To optimally use the data towards reliable species identification will require further steps to validate the method and reference libraries. The fruit fly tribe Dacini holds about a thousand species, of which eighty are pests of economic concern, including some of the world’s foremost fruit and vegetable pests, and there are many morphologically cryptic species complexes in the tribe. Where previous studies showed limited success in using COI to identify Dacini, our results with a highly curated morphological dataset indicate high congruence between morphology and COI: 90% of the species in our 5,576 sequences, 262-species global dataset can be identified with COI alone based on a monophyly criterion. However, in some key pest species belonging to complexes that were previously thought diagnosable with COI, we found that expanded sampling and independent validation of identifications using genomic data revealed introgression of mitochondrial DNA. We find that the informative SNPs are uniformly distributed across the COI gene, and we provide recommendations for standardization. We conclude that reliable molecular identifications with COI require extensive species coverage, population sampling, and genomics-supported reference identifications before they can be validated as a “diagnostic” marker for specific groups.
7
Citation6
0
Save
1

Ecological correlates of gene family size in a pine-feeding sawfly genome and across Hymenoptera

Kim Vertacnik et al.Mar 16, 2021
Abstract A central goal in evolutionary biology is to determine the predictability of adaptive genetic changes. Despite many documented cases of convergent evolution at individual loci, little is known about the repeatability of gene family expansions and contractions. To address this void, we examined gene family evolution in the redheaded pine sawfly Neodiprion lecontei , a non-eusocial hymenopteran and exemplar of a pine-specialized lineage evolved from angiosperm-feeding ancestors. After assembling and annotating a draft genome, we manually annotated multiple gene families with chemosensory, detoxification, or immunity functions and characterized their genomic distributions and evolutionary history. Our results suggest that expansions of bitter gustatory receptor (GR), clan 3 cytochrome P450 (CYP3), and antimicrobial peptide (AMP) subfamilies may have contributed to pine adaptation. By contrast, there was no evidence of recent gene family contraction via pseudogenization. Next, we compared the number of genes in these same families across insect taxa that vary in diet, dietary specialization, and social behavior. In Hymenoptera, herbivory was associated with small GR and olfactory receptor (OR) families, eusociality was associated with large OR and small AMP families, and—unlike investigations in more closely related taxa—ecological specialization was not related to gene family size. Overall, our results suggest that gene families that mediate ecological interactions may expand and contract predictably in response to particular selection pressures, however, the ecological drivers and temporal pace of gene gain and loss likely varies considerably across gene families.
1
Citation3
0
Save
24

Whole Genomes Reveal Evolutionary Relationships and Mechanisms Underlying Gene-Tree Discordance inNeodiprionSawflies

Danielle Herrig et al.Jan 6, 2023
A bstract Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and locus-based and SNP-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that—except for three uncertain relationships—is robust to different strategies for analyzing whole-genome data. Despite this consistency, underlying gene-tree discordance is high. To understand this discordance, we use multiple regression to model topological discordance as a function of several genomic features. We find that gene-tree discordance tends to be higher in regions of the genome that may be more prone to gene-tree estimation error, as indicated by a lower density of parsimony-informative sites, a higher density of genes, a higher average pairwise genetic distance, and gene trees with lower average bootstrap support. Also, contrary to the expectation that discordance via incomplete lineage sorting is reduced in low-recombination regions of the genome, we find a negative correlation between recombination rate and topological discordance. We offer potential explanations for this pattern and hypothesize that it may be unique to lineages that have diverged with gene flow. Our analysis also reveals an unexpected discordance hotspot on Chromosome 1, which contains several genes potentially involved in mitochondrial-nuclear interactions and produces a gene-tree that resembles a highly discordant mitochondrial tree. Based on these observations, we hypothesize that our genome-wide scan for topological discordance has identified a nuclear locus involved in a mito-nuclear incompatibility. Together, these results demonstrate how phylogenomic analysis coupled with high-quality, annotated genomes can generate novel hypotheses about the mechanisms that drive divergence and produce variable genealogical histories across genomes.
24
Citation2
0
Save
0

Whole Genomes Reveal Evolutionary Relationships and Mechanisms Underlying Gene-Tree Discordance in Neodiprion Sawflies

Danielle Herrig et al.Jul 6, 2024
Abstract Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and SNP-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that—except for three uncertain relationships—was robust to different strategies for analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand this genealogical variation, we used multiple linear regression to model site concordance factors estimated in 50-kb windows as a function of several genomic predictor variables. We found that site concordance factors tended to be higher in regions of the genome with more parsimony-informative sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and lower D-statistics (less introgression). Together, these results suggest that incomplete lineage sorting, introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity across genomes.
0
Citation2
0
Save
8

A chromosome-scale genome assembly of aBacillus thuringiensisCry1Ac insecticidal protein resistant strain ofHelicoverpa zea

Amanda Stahlke et al.Apr 12, 2022
Abstract Helicoverpa zea (Lepidoptera: Noctuidae) is an insect pest of major cultivated crops in North and South America. The species has adapted to different host plants and developed resistance to several insecticidal agents, including Bacillus thuringiensis (Bt) insecticidal proteins in transgenic cotton and maize. H. zea populations persist year-round in tropical and subtropical regions, but seasonal migrations into temperate zones increase the geographic range of associated crop damage. To better understand the genetic basis of these physiological and ecological characteristics, we generated a high-quality chromosome-level assembly for a single H. zea male from Bt resistant strain, HzStark_Cry1AcR. Hi-C data were used to scaffold an initial 375.2 Mb contig assembly into 30 autosomes and the Z sex chromosome (scaffold N50 = 12.8 Mb and L50 = 14). The scaffolded assembly was error-corrected with a novel pipeline, polishCLR. The mitochondrial genome was assembled through an improved pipeline and annotated. Assessment of this genome assembly indicated 98.8% of the Lepidopteran Benchmark Universal Single-Copy Ortholog set were complete (98.5% as complete single-copy). Repetitive elements comprised approximately 29.5% of the assembly with the plurality (11.2%) classified as retroelements. This chromosome-scale reference assembly for H. zea , ilHelZeax1.1, will facilitate future research to evaluate and enhance sustainable crop production practices. Significance We established a chromosome-level reference assembly for Helicoverpa zea , an insect pest of multiple cultivated crops in the Americas. This assembly of a Bacillus thuringiensis insecticidal protein resistant strain, HzStark_Cry1AcR, will facilitate future research in areas such as population genomics and adaptations to agricultural control practices.
8
Citation1
0
Save
0

Repeated shifts in sociality are associated with fine-tuning of highly conserved and lineage-specific enhancers in a socially flexible bee

Beryl Jones et al.Aug 16, 2024
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used STARR-seq, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes . We identified over 36,000 enhancers in the L. albipes genome from three social and three solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is driven both by the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior.
0

The genetic basis of the black pupae phenotype in tephritid fruit flies

Daniel Paulo et al.Jun 9, 2024
Abstract The remarkable diversity of insect pigmentation offers a captivating avenue for exploring evolution and genetics. In tephritid fruit flies, decoding the molecular pathways underlying pigmentation traits also plays a central role in applied entomology. Mutant phenotypes like the black pupae (bp) have long been used as a component of genetic sexing strains, allowing male-only release in tephritid sterile insect technique applications. However, the genetic basis of bp remains largely unknown. Here, we present independent evidence from classical and modern genetics showing that the bp phenotype in the GUA10 strain of the Mexican fruit fly, Anastrepha ludens , is caused by a large deletion at the ebony locus resulting in the removal of the entire protein-coding region of the gene. Targeted knockout of ebony induced analogous bp phenotypes across six tephritid species spanning over 50 million years of divergent evolution. This functionally validated our findings and allowed for a deeper investigation into the role of Ebony in pigmentation and development in these species. Our study offers fundamental knowledge for developing new sexing strains based on the bp marker and for future evolutionary developmental biology studies in tephritid fruit flies.
Load More