Markéta Žďárská
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
6
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Cytokinins regulate spatially-specific ethylene production to control root growth inArabidopsis

Amel Yamoune et al.Jan 8, 2023
Abstract The two principal growth regulators cytokinins and ethylene are known to interact in the regulation of plant growth. However, information about underlying molecular mechanism and positional specificity of the cytokinin/ethylene crosstalk in root growth control is scarce. We have identified spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be ethylene biosynthesis-dependent. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE ( IPT ) in proximal and peripheral tissues leads to both root and RAM shortening. In contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis, the production of ACC by ACC SYNTHASEs (ACSs), and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3 and ACO4 as being responsible for ethylene biosynthesis and the ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis . Finally, we describe the tight cooperation between cytokinin and ethylene signaling in cytokinin-induced, ethylene-regulated control of ACO4 due to the direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling.
16
Citation3
0
Save
17

AHK5 mediates ETR1-initiated multistep phosphorelay in Arabidopsis

Agnieszka Szmitkowska et al.Sep 17, 2021
Summary Plants, like other sessile organisms, need to sense many different signals, and in response to them, modify their developmental programs to be able to survive in a highly changing environment. The multistep phosphorelay (MSP) in plants is a good candidate for a response mechanism that integrates multiple signal types both environmental and intrinsic in origin. Recently, ethylene was shown to control MSP activity via the histidine kinase (HK) activity of ETHYLENE RESPONSE 1 (ETR1) 1,2 , but the underlying molecular mechanism still remains unclear. Here we show that although ETR1 is an active HK, its receiver domain (ETR1 RD ) is structurally and functionally unable to accept the phosphate from the phosphorylated His in the ETR1 HK domain (ETR1 HK ) to initiate the phosphorelay to ARABIDOPSIS HISTIDINE-CONTAINING PHOSPHOTRANSMITTERs (AHPs), the next link downstream members in MSP signaling. Instead, ETR1 interacts with another HK ARABIDOPSIS HISTIDINE KINASE 5 (AHK5) and transfers the phosphate from ETR1 HK through the receiver domain of AHK5 (AHK5 RD ), and subsequently to AHP1, AHP2 and AHP3, independently of the HK activity of AHK5. We show that AHK5 is necessary for ethylene-initiated, but not cytokinin-initiated, MSP signaling in planta and that it thus mediates hormonal control of root growth.
17
Citation2
0
Save
0

Cytokinins regulate spatially-specific ethylene production to control root growth in Arabidopsis

Amel Yamoune et al.Jul 1, 2024
Two principal growth regulators, cytokinins and ethylene, are known to interact in the regulation of plant growth. However, information about the underlying molecular mechanism and positional specificity of cytokinin/ethylene crosstalk in the control of root growth is scarce. We have identified the spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. By contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to that of mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis: production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs) and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3, and ACO4 as being responsible for ethylene biosynthesis and ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade, and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling, is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatially specific regulation of ethylene biosynthesis as a key aspect of the hormonal control of root growth.
0
Citation1
0
Save