CC
Céline Cougoule
Author with expertise in Molecular Mechanisms of Inflammasome Activation and Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
146
h-index:
31
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A druggable copper-signalling pathway that drives inflammation

Stéphanie Solier et al.Apr 26, 2023
Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.
1
Citation67
1
Save
3

Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID‐19: An Observational Multicenter Study

Nicolas Hoertel et al.Jul 2, 2021
Several medications commonly used for a number of medical conditions share a property of functional inhibition of acid sphingomyelinase (ASM), or FIASMA. Preclinical and clinical evidence suggest that the ASM/ceramide system may be central to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) infection. We examined the potential usefulness of FIASMA use among patients hospitalized for severe coronavirus disease 2019 (COVID‐19) in an observational multicenter study conducted at Greater Paris University hospitals. Of 2,846 adult patients hospitalized for severe COVID‐19, 277 (9.7%) were taking an FIASMA medication at the time of their hospital admission. The primary end point was a composite of intubation and/or death. We compared this end point between patients taking vs. not taking an FIASMA medication in time‐to‐event analyses adjusted for sociodemographic characteristics and medical comorbidities. The primary analysis was a Cox regression model with inverse probability weighting (IPW). Over a mean follow‐up of 9.2 days (SD = 12.5), the primary end point occurred in 104 patients (37.5%) receiving an FIASMA medication, and 1,060 patients (41.4%) who did not. Despite being significantly and substantially associated with older age and greater medical severity, FIASMA medication use was significantly associated with reduced likelihood of intubation or death in both crude (hazard ratio (HR) = 0.71, 95% confidence interval (CI) = 0.58–0.87, P < 0.001) and primary IPW (HR = 0.58, 95%CI = 0.46–0.72, P < 0.001) analyses. This association remained significant in multiple sensitivity analyses and was not specific to one particular FIASMA class or medication. These results show the potential importance of the ASM/ceramide system in COVID‐19 and support the continuation of FIASMA medications in these patients. Double‐blind controlled randomized clinical trials of these medications for COVID‐19 are needed.
3
Citation62
2
Save
0

Type-3 Secretion System–induced pyroptosis protects Pseudomonas against cell-autonomous immunity

Elif Eren et al.May 28, 2019
Abstract Inflammasome-induced pyroptosis comprises a key cell-autonomous immune process against intracellular bacteria, namely the generation of dying cell structures. These so-called pore-induced intracellular traps (PITs) entrap and weaken intracellular microbes. However, the immune importance of pyroptosis against extracellular pathogens remains unclear. Here, we report that Type-3 secretion system (T3SS)-expressing Pseudomonas aeruginosa ( P. aeruginosa ) escaped PIT immunity by inducing a NLRC4 inflammasome-dependent macrophage pyroptosis response in the extracellular environment. To the contrary, phagocytosis of Salmonella Typhimurium promoted NLRC4-dependent PIT formation and the subsequent bacterial caging. Remarkably, T3SS-deficient Pseudomonas were efficiently sequestered within PIT-dependent caging, which favored exposure to neutrophils. Conversely, both NLRC4 and caspase-11 deficient mice presented increased susceptibility to T3SS-deficient P. aeruginosa challenge, but not to T3SS-expressing P. aeruginosa. Overall, our results uncovered that P. aeruginosa uses its T3SS to overcome inflammasome-triggered pyroptosis, which is primarily effective against intracellular invaders. Importance Although innate immune components confer host protection against infections, the opportunistic bacterial pathogen Pseudomonas aeruginosa ( P. aeruginosa ) exploits the inflammatory reaction to thrive. Specifically the NLRC4 inflammasome, a crucial immune complex, triggers an Interleukin (IL)-1β and -18 deleterious host response to P. aeruginosa . Here, we provide evidence that, in addition to IL-1 cytokines, P. aeruginosa also exploits the NLRC4 inflammasome-induced pro-inflammatory cell death, namely pyroptosis, to avoid efficient uptake and killing by macrophages. Therefore, our study reveals that pyroptosis-driven immune effectiveness mainly depends on P. aeruginosa localization. This paves the way toward our comprehension of the mechanistic requirements for pyroptosis effectiveness upon microbial infections and may initiate targeted approaches in order to ameliorate the innate immune functions to infections. Graphical abstract Macrophages infected with T3SS-expressing P. aeruginosa die in a NLRC4-dependent manner, which allows bacterial escape from PIT-mediated cell-autonomous immunity and neutrophil efferocytosis. However, T3SS-deficient P. aeruginosa is detected by both NLRC4 and caspase-11 inflammasomes, which promotes bacterial trapping and subsequent efferocytosis of P. aeruginosa -containing-PITs by neutrophils.
0
Citation5
0
Save
6

Phospholipid peroxidation fuels ExoU phospholipase-dependent cell necrosis and supportsPseudomonas aeruginosa-driven pathology

Salimata Bagayoko et al.Feb 17, 2021
Summary Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo . Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis , suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.
6
Citation4
0
Save
5

Druggable redox pathways against M. abscessus in cystic fibrosis patient-derived airway organoids

Stephen Leon-Icaza et al.Jan 3, 2022
Abstract Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose antioxidants as a potential host-directed strategy to improve Mabs infection control.
5
Citation4
0
Save
8

EEF2-inactivating toxins engage the NLRP1 inflammasome and promote epithelial barrier disruption uponPseudomonasinfection

Miriam Pinilla et al.Jan 17, 2023
ABSTRACT The intracellular inflammasome complex have been implicated in the maladaptive tissue damage and inflammation observed in chronic Pseudomonas aeruginosa infection. Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by P. aeruginosa , specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects Exotoxin A (EXOA), a ribotoxin released by P. aeruginosa Type 2 Secretion System (T2SS) during chronic infection. Mechanistically, EXOA-driven Eukaryotic Elongation Factor 2 (EEF2) ribosylation and covalent inactivation promotes ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, Diphtheria Toxin and Cholix Toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, Cystic Fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2. KEY POINTS P. aeruginosa induces NLRP1-dependent pyroptosis in human corneal and nasal epithelial cells P. aeruginosa Exotoxin A (EXOA) and other EEF2-inactivating bacterial exotoxins activate the human NLRP1 inflammasome EEF2 inactivation promotes ribotoxic stress response and ZAKα kinase-dependent NLRP1 inflammasome activation. Bronchial epithelial cells from Cystic Fibrosis patients show extreme sensitivity to ribotoxic stress-dependent NLRP1 inflammasome activation in response to Exotoxin A P38 and ZAKα inhibition protects Cystic Fibrosis epithelial cell from EXOA-induced pyroptosis
8
Citation2
0
Save
15

Caspase-1-driven neutrophil pyroptosis promotes an incomplete NETosis upon Pseudomonas aeruginosa infection

Stephen Leon-Icaza et al.Jun 28, 2021
Abstract Multiple neutrophil death programs contribute to host defense against infections. Although expressing all necessary components, neutrophils specifically fail to undergo pyroptosis, a lytic form of cell death triggered by the activation of the pro-inflammatory complex inflammasome. In the light of the arm race, we hypothesized that intrinsic neutrophil pyroptosis resistance might be bypassed in response to specific microbial species. We show that Pseudomonas aeruginosa ( P. aeruginosa ) stimulates Caspase-1-dependent pyroptosis in human and murine neutrophils. Mechanistically, activated NLRC4 inflammasome supports Caspase-1-driven Gasdermin-D (GSDMD) activation, IL-1β cytokine release and neutrophil pyroptosis. Furthermore, GSDMD activates Peptidyl Arginine Deaminase-4 which drives an “incomplete NETosis” where neutrophil DNA fills the cell cytosol but fails crossing plasma membrane. Finally, we show that neutrophil Caspase-1 account for IL-1β production and contributes to various P. aeruginosa strains spread in mice. Overall, we demonstrate that neutrophils are fully competent for Caspase-1-dependent pyroptosis, which drives an unsuspected “incomplete NETosis”. Summary Neutrophils play an essential roles against infections. Although multiple neutrophil death programs contribute to host defense against infections, they fail to undergo pyroptosis, a pro-inflammatory form of cell death. Upon Infections, pyroptosis can be induced in macrophages or epithelial cells upon activation of pro-inflammatory complexes, inflammasomes that trigger Caspase-1-driven Gasdermin dependent plasma membrane lysis. In the light of host-microbe interactions, we hypothesized that yet to find microbial species might hold the capacity to overcome neutrophil resistance to inflammasome-driven pyroptosis. Among several bacterial species, we describe that the bacterium Pseudomonas aeruginosa specifically engages the NLRC4 inflammasome, which promotes Caspase-1-dependent Gasdermin-D activation and subsequent neutrophil pyroptosis. Furthermore, inflammasome-driven pyroptosis leads to DNA decondensation and expansion into the host cell cytosol but not to the so called Neutrophil Extracellular Trap (NET) release as DNA fails breaching the plasma membrane. Finally, in vivo P. aeruginosa infections highlight that Caspase-1-driven neutrophil pyroptosis is functional and is detrimental upon P. aeruginosa infection. Altogether, our results unexpectedly underline neutrophil competence for Caspase-1-dependent pyroptosis, a process that contributes to host susceptibility to P. aeruginosa infection.
15
Citation1
0
Save
0

Curcumin-mediated NRF2 induction limits inflammatory damage in preclinical models of cystic fibrosis

Stephen Leon-Icaza et al.Mar 17, 2024
Abstract Overactive inflammation is directly correlated with airway damage and early death in individuals with cystic fibrosis (CF), a genetic disorder caused by mutation in the CFTR gene. Reducing the impact of inflammatory damage is therefore a major concern in CF. Several studies indicate that a decrease in the nuclear factor erythroid 2-related factor-2 (NRF2) signaling in people with CF may hamper their ability to alleviate oxidative stress and inflammation, although the role of NRF2 in CF inflammatory damage has not been determined. Therefore, we examined whether the phytochemical curcumin, an activator of NRF2, might provide a beneficial effect in the context of CF. Herein, combining Cftr -depleted zebrafish larvae as innovative biomedical model with CF patient-derived airway organoids (AOs), we sought to understand how NRF2 dysfunction leads to abnormal inflammatory status and impaired tissue remodeling, and determine the effects of curcumin in reducing inflammation and tissue damage in CF. We demonstrate that NFR2 is instrumental in efficiently regulating inflammatory and repair processes in vivo , thereby preventing acute neutrophilic inflammation and tissue damage. Importantly, curcumin treatment restores NRF2 activity in both CF zebrafish and AOs. Curcumin reduces neutrophilic inflammation in CF context, by rebalancing the production of epithelial ROS and pro-inflammatory cytokines. Furthermore, curcumin alleviates CF-associated tissue remodeling and allows tissue repair to occur. Our findings demonstrate that curcumin reduces inflammatory damage by restoring normal NRF2 activity, since disruption of Nrf2 pathway abrogated the effect of treatment in CF zebrafish. This work highlights the protective role of NRF2 in limiting inflammation and injury, and show that therapeutic strategies to normalize NRF2 activity using curcumin might simultaneously reduce inflammation and enhance tissue repair, and thus prevent infectious and inflammatory lung damage in CF.
0

Mycobacterium tuberculosis Modulates the Metabolism of Alternatively Activated Macrophages to Promote Foam Cell Formation and Intracellular Survival

Melanie Genoula et al.Dec 14, 2019
The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM). Indeed, FM are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate if distinct macrophage activation states exposed to a tuberculosis-associated microenvironment can accumulate LBs, and its impact on the control of infection. We showed that signal transducer and activator of transcription 6 (STAT6) activation in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the β-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. We demonstrated that inhibition of the lipolytic activity or of the FAO drives M(IL-4) macrophages into FM. Also, exhibiting a predominant FAO metabolism, mouse alveolar macrophages are less prone to become FM compared to bone marrow derived-macrophages. Upon Mtb infection, M(IL-4) macrophages are metabolically re-programmed towards the aerobic glycolytic pathway and evolve towards a foamy phenotype, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate a role for STAT6-driven FAO in preventing FM differentiation, and reveal an extraordinary capacity by Mtb to rewire metabolic pathways in human macrophages and induce the favorable FM.
Load More