YD
Yves Dufrêne
Author with expertise in Cyclotide Bioengineering and Protein Anchoring Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(67% Open Access)
Cited by:
1,445
h-index:
88
/
i10-index:
273
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nanoscale Mapping of the Elasticity of Microbial Cells by Atomic Force Microscopy

Ahmed Touhami et al.May 1, 2003
Single microbial cells can show important local variations of elasticity due to the complex, anisotropic composition of their walls. An example of this is the yeast during cell division, where chitin is known to accumulate in the localized region of the cell wall involved in budding. We used atomic force microscopy (AFM) to measure quantitatively the local mechanical properties of hydrated yeast cells. Topographic images and spatially resolved force maps revealed significant lateral variations of elasticity across the cell surface, the bud scar region being significantly stiffer than the surrounding cell wall. To get quantitative information on sample elasticity, force curves were converted into force vs indentation curves. The curves were then fitted with the Hertz model, yielding Young's modulus values of 6.1 ± 2.4 and 0.6 ± 0.4 MPa for the bud scar and surrounding cell surface, respectively. These data lead us to conclude that in yeast, the bud scar is 10 times stiffer than the surrounding cell wall, a finding which is consistent with the accumulation of chitin in the bud scar region. This is the first report in which spatially resolved AFM force curves are used to distinguish regions of different elasticity at the surface of single microbial cells in relation with function (i.e., cell division). In future research, this approach will provide fundamental insights into the spatial distribution of physical properties at heterogeneous microbial cell surfaces.
49

Force-induced changes of PilY1 drive surface sensing by Pseudomonas aeruginosa

Shanice Webster et al.Aug 24, 2021
Abstract During biofilm formation, the opportunistic pathogen Pseudomonas aeruginosa uses its type IV pili (TFP) to sense a surface, eliciting increased second messenger production and regulating target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect surface contact is still poorly understood, although mechanosensing is often invoked with little data supporting this claim. Using a combination of molecular genetics and single cell analysis, with biophysical, biochemical and genomics techniques we show that force-induced changes mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1 are required for surface sensing. Atomic force microscopy shows that PilY1 can undergo force-induced, sustained conformational changes akin to those observed for mechanosensitive proteins like titin. We show that mutation of a single cysteine residue in the vWA domain results in modestly lower surface adhesion forces, increased nanospring-like properties, as well as reduced c-di-GMP signaling and biofilm formation. Mutating this cysteine has allowed us to genetically separate TFP function in twitching from surface sensing signaling. The conservation of this Cys residue in all P. aeruginosa PA14 strains, and its absence in the ~720 sequenced strains of P. aeruginosa PAO1, could contribute to explaining the observed differences in surface colonization strategies observed for PA14 versus PAO1. Importance Most bacteria live on abiotic and biotic surfaces in surface-attached communities known as biofilms. Surface sensing and increased levels of the second messenger molecule c-di-GMP are crucial to the transition from planktonic to biofilm growth. The mechanism(s) underlying TFP-mediated surface detection that triggers this c-di-GMP signaling cascade are unclear. Here, we provide a key insight into this question: we show that the eukaryotic-like, vWA domain of the TFP tip-associated protein PilY1 responds to mechanical force, which in turn drives production of a key second messenger needed to regulate surface behaviors. Our studies highlight a potential mechanism that could account for differing surface colonization strategies.
49
Citation3
0
Save
0

Functional Redundancy inCandida aurisCell Surface Adhesins Crucial for Cell-Cell Interaction and Aggregation

Tristan Wang et al.Mar 21, 2024
ABSTRACT Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
0
Citation2
0
Save
24

Mechanistic basis of staphylococcal interspecies competition for skin colonization

J.J. Maciag et al.Jan 27, 2023
Staphylococci, whether beneficial commensals or pathogens, often colonize human skin, potentially leading to competition for the same niche. In this multidisciplinary study we investigate the structure, binding specificity, and mechanism of adhesion of the Aap lectin domain required for Staphylococcus epidermidis skin colonization and compare its characteristics to the lectin domain from the orthologous Staphylococcus aureus adhesin SasG. The Aap structure reveals a legume lectin-like fold with atypical architecture, showing specificity for N-acetyllactosamine and sialyllactosamine. Bacterial adhesion assays using human corneocytes confirmed the biological relevance of these Aap-glycan interactions. Single-cell force spectroscopy experiments measured individual binding events between Aap and corneocytes, revealing an extraordinarily tight adhesion force of nearly 900 nN and a high density of receptors at the corneocyte surface. The SasG lectin domain shares similar structural features, glycan specificity, and corneocyte adhesion behavior. We observe cross-inhibition of Aap-and SasG-mediated staphylococcal adhesion to corneocytes. Together, these data provide insights into staphylococcal interspecies competition for skin colonization and suggest potential avenues for inhibition of S. aureus colonization.
24
Citation2
0
Save
Load More