HS
Harald Sontheimer
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
3,093
h-index:
88
/
i10-index:
197
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology

Dolan Pritchett et al.Apr 1, 1989
+4
B
H
D
0

Two novel GABAA receptor subunits exist in distinct neuronal subpopulations

Brenda Shivers et al.Sep 1, 1989
+4
R
I
B
Two cDNAs encoding novel GABAA receptor subunits were isolated from a rat brain library. These subunits, gamma 2 and delta, share approximately 35% sequence identity with alpha and beta subunits and form functional GABA-gated chloride channels when expressed alone in vitro. The gamma 2 subunit is the rat homolog of the human gamma 2 subunit recently shown to be important for benzodiazepine pharmacology. Cellular localization of the mRNAs encoding the gamma 2 and delta subunits in rat brain revealed that largely distinct neuronal subpopulations express the two subunits. The delta subunit distribution resembles that of the high affinity GABAA receptor labeled with [3H]muscimol; the gamma 2 subunit distribution resembles that of GABAA/benzodiazepine receptors labeled with [3H]flunitrazepam. These findings have implications for the composition of two different GABAA receptor subtypes and for information processing in networks using GABA for signaling.
0

Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells

Stacey Watkins et al.Jun 19, 2014
+3
I
S
S
Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood–brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumours that use the perivascular space for invasion and co-opt existing vessels as satellite tumour form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of preexisting vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over the regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumour-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. Astrocytic endfeet maintain endothelial tight junctions that form the blood–brain barrier (BBB), which can be damaged by invading gliomas. Here, the authors show that this damage is due to the association of gliomas with existing vessels and the displacement of astrocytic endfeet.
0
Citation450
0
Save
0

Glutamate release by primary brain tumors induces epileptic activity

Susan Buckingham et al.Sep 11, 2011
+4
B
S
S
People with brain cancers called gliomas often have seizures due to secretion of the excitatory neurotransmitter glutamate from the tumor. Now, Harald Sontheimer and his colleagues report that blockade of a cystine-glutamate transporter in tumor cells by an FDA-approved drug can reduce glioma-induced epilepsy in mice. Epileptic seizures are a common and poorly understood comorbidity for individuals with primary brain tumors. To investigate peritumoral seizure etiology, we implanted human-derived glioma cells into severe combined immunodeficient mice. Within 14–18 d, glioma-bearing mice developed spontaneous and recurring abnormal electroencephalogram events consistent with progressive epileptic activity. Acute brain slices from these mice showed marked glutamate release from the tumor mediated by the system xc− cystine-glutamate transporter (encoded by Slc7a11). Biophysical and optical recordings showed glutamatergic epileptiform hyperexcitability that spread into adjacent brain tissue. We inhibited glutamate release from the tumor and the ensuing hyperexcitability by sulfasalazine (SAS), a US Food and Drug Administration–approved drug that blocks system xc−. We found that acute administration of SAS at concentrations equivalent to those used to treat Crohn's disease in humans reduced epileptic event frequency in tumor-bearing mice compared with untreated controls. SAS should be considered as an adjuvant treatment to ameliorate peritumoral seizures associated with glioma in humans.
0
Citation442
0
Save
0

Chlorotoxin Inhibits Glioma Cell Invasion via Matrix Metalloproteinase-2

Jessy Deshane et al.Feb 1, 2003
H
C
J
Primary brain tumors (gliomas) have the unusual ability to diffusely infiltrate the normal brain thereby evading surgical treatment. Chlorotoxin is a scorpion toxin that specifically binds to the surface of glioma cells and impairs their ability to invade. Using a recombinant His-Cltx we isolated and identified the principal Cltx receptor on the surface of glioma cells as matrix metalloproteinase-2 (MMP-2). MMP-2 is specifically up-regulated in gliomas and related cancers, but is not normally expressed in brain. We demonstrate that Cltx specifically and selectively interacts with MMP-2 isoforms, but not with MMP-1, -3, and -9, which are also expressed in malignant glioma cells. Importantly, we show that the anti-invasive effect of Cltx on glioma cells can be explained by its interactions with MMP-2. Cltx exerts a dual effect on MMP-2: it inhibits the enzymatic activity of MMP-2 and causes a reduction in the surface expression of MMP-2. These findings suggest that Cltx is a specific MMP-2 inhibitor with significant therapeutic potential for gliomas and other diseases that invoke the activity of MMP-2.
1

Astrocyte plasticity ensures continued endfoot coverage of cerebral blood vessels and integrity of the blood brain barrier, with plasticity declining with normal aging.

William Mills et al.May 10, 2021
+4
J
S
W
Astrocytes extend endfeet that enwrap the vasculature. Disruptions to this association in disease coincide with breaches in blood-brain barrier (BBB) integrity, so we asked if the focal ablation of an astrocyte is sufficient to disrupt the BBB. 2Phatal ablation of astrocytes induced a plasticity response whereby surrounding astrocytes extended processes to cover vascular vacancies. This occurred prior to endfoot retraction in young mice yet occurred with significant delay in aged animals. Laser-stimulating replacement astrocytes showed them to induce constrictions in pre-capillary arterioles indicating that replacement astrocytes are functional. Inhibition of EGFR and pSTAT3 significantly reduced astrocyte replacement post-ablation yet without perturbations to BBB integrity. Identical endfoot replacement following astrocyte cell death due to reperfusion post-stroke supports the conclusion that astrocyte plasticity ensures continual vascular coverage so as to retain the BBB. Together, these studies uncover the ability of astrocytes to maintain cerebrovascular coverage via substitution from nearby cells and may represent a novel therapeutic target for vessel recovery post-stroke.
4

Multifunctional ferromagnetic fiber robots for navigation, sensing, and treatment in minimally invasive surgery

Yujing Zhang et al.Jan 30, 2023
+14
R
Y
Y
Abstract Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Here, we present a robotic fiber platform for integrating navigation, sensing, and therapeutic functions at a submillimeter scale. These fiber robots consist of ferromagnetic, electrical, optical, and microfluidic components, fabricated with a thermal drawing process. Under magnetic actuation, they can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, we utilize Langendorff mouse hearts model, glioblastoma microplatforms, and in vivo mouse models to demonstrate the capabilities of sensing electrophysiology signals and performing localized treatment. Additionally, we demonstrate that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
7

Fishing for contact: Modeling perivascular glioma invasion in the zebrafish brain

Robyn Umans et al.Aug 15, 2020
H
C
M
R
Abstract Glioblastoma multiforme (GBM) is a highly invasive, central nervous system (CNS) cancer for which there is no a cure. Invading tumor cells evade treatment, limiting the efficacy of the current standard of care regimen. Understanding the underlying invasive behaviors that support tumor growth may allow for generation of novel GBM therapies. Zebrafish ( Danio rerio ) are attractive for genetics and live imaging, and have in recent years, emerged as a model system suitable for cancer biology research. While other groups have studied CNS tumors using zebrafish, few have concentrated on the invasive behaviors supporting the development of these diseases. Previous studies demonstrated that one of the main mechanisms of GBM invasion is perivascular invasion, i.e. single tumor cell migration along blood vessels. Here, we characterize phenotypes, methodology, and potential therapeutic avenues for utilizing zebrafish to model perivascular GBM invasion. Using patient derived xenolines or an adherent cell line, we demonstrate tumor expansion within the zebrafish brain. Within 24 hours post-intracranial injection, D54-MG-tdTomato glioma cells produce finger-like projections along the zebrafish brain vasculature. As few as 25 GBM cells were sufficient to promote single cell vessel co-option. Of note, these tumor-vessel interactions are CNS specific, and do not occur on pre-existing blood vessels when injected into the animal’s peripheral tissue. Tumor-vessel interactions increase over time and can be pharmacologically disrupted through inhibition of Wnt signaling. Therefore, zebrafish serve as a favorable model system to study perivascular glioma invasion, one of the deadly characteristics that make GBM so difficult to treat.
7
Citation1
0
Save
1

Infection-induced epilepsy is caused by increased expression of chondroitin sulfate proteoglycans in hippocampus and amygdala

Dipan Patel et al.May 17, 2023
+6
B
N
D
Alterations in the extracellular matrix (ECM) are common in epilepsy, yet whether they are cause or consequence of disease is unknow. Using Theiler's virus infection model of acquired epilepsy we find de novo expression of chondroitin sulfate proteoglycans (CSPGs), a major ECM component, in dentate gyrus (DG) and amygdala exclusively in mice with seizures. Preventing synthesis of CSPGs specifically in DG and amygdala by deletion of major CSPG aggrecan reduced seizure burden. Patch-clamp recordings from dentate granule cells (DGCs) revealed enhanced intrinsic and synaptic excitability in seizing mice that was normalized by aggrecan deletion. In situ experiments suggest that DGCs hyperexcitability results from negatively charged CSPGs increasing stationary cations (K+, Ca2+) on the membrane thereby depolarizing neurons, increasing their intrinsic and synaptic excitability. We show similar changes in CSPGs in pilocarpine-induced epilepsy suggesting enhanced CSPGs in the DG and amygdala may be a common ictogenic factor and novel therapeutic potential.
4

Using zebrafish to elucidate glial-vascular interactions during CNS development

Robyn Umans et al.Jan 17, 2021
H
W
C
R
Abstract An emerging area of interest in Neuroscience is the cellular relationship between glia and blood vessels, as many of the presumptive support roles of glia require an association with the vasculature. These interactions are best studied in vivo and great strides have been made using mice to longitudinally image glial-vascular interactions. However, these methods are cumbersome for developmental studies, which could benefit from a more accessible system. Zebrafish ( Danio rerio ) are genetically tractable vertebrates, and given their translucency, are readily amenable for daily live imaging studies. We set out to examine whether zebrafish glia have conserved traits with mammalian glia regarding their ability to interact with and maintain the developing brain vasculature. We utilized transgenic zebrafish strains in which oligodendrocyte transcription factor 2 ( olig2 ) and glial fibrillary acidic protein ( gfap ) identify different glial populations in the zebrafish brain and document their corresponding relationship with brain blood vessels. Our results demonstrate that olig2 and gfap zebrafish glia have distinct lineages and each interact with brain vessels as previously observed in mouse brain. Additionally, we manipulated these relationships through pharmacological and genetic approaches to distinguish the roles of these cell types during blood vessel development. olig2 glia use blood vessels as a pathway during their migration and Wnt signaling inhibition decreases their single-cell vessel co-option. By contrast, the ablation of gfap glia at the beginning of CNS angiogenesis impairs vessel development through a reduction in Vascular endothelial growth factor (Vegf), supporting a role for gfap glia during new brain vessel formation in zebrafish. This data suggests that zebrafish glia, akin to mammalian glia, have different lineages that show diverse interactions with blood vessels, and are a suitable model for elucidating glial-vascular relationships during vertebrate brain development.
Load More